Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036367059> ?p ?o ?g. }
- W2036367059 endingPage "609" @default.
- W2036367059 startingPage "596" @default.
- W2036367059 abstract "Spatial information on biotopes would be an asset for boreal peatland inventories. It may be helpful for protection and monitoring changes in species diversity caused by artificial regulation of hydrology, atmospheric deposition, and global change. We took a data-driven approach to explore the potential of airborne hyperspectral data in determining plant associations of treeless northern boreal peatlands in Finland (65°57′N, 24°29′E). The objective was to produce an ecological peatland classification on a class hierarchical level which would be as detailed as possible, and could be accurately mapped with remotely sensed hyperspectal data. The proper hierarchical class level was decided based on statistical approaches including canonical correspondence analysis, unsupervised classification, and multivariate analysis of variance. Subsequently, fuzzy classification with support vector machines was applied to map the classes in the spatial domain from airborne geo- and atmospherically corrected hyperspectal HyMap data. We conducted detailed in situ sampling for surface plant inventory, soil root zone bulk dielectric permittivity (ε), electrical conductivity (σ), and pH. Constrained canonical correspondence ordination revealed that ε, σ (p < 0.01), and pH (p < 0.001) were significantly correlated with the ordination and were thus important drivers for vegetation composition. Four biotopes were distinguishable by their spectra: Sphagnum fuscum–Emperum nigrum–Rubus chamaemorus–S. angustifolium-bog, Eriophorum vaginatum–S. lindenbergii-sedge fen, eutrophic Carex lasiocarpa–Trichophorum cespitosum-fen, and Comarum palustre–S. majus–Carex rostrata-swamp. The highest overall efficiencies of prediction (overall accuracy 87.8%, kappa 0.781) were calculated using only 10% of the original training data indicating that low numbers of properly selected training sites from class boundaries could be appropriate for the support vector machines. The class specific assessment of accuracy with receiver operating characteristics curves also confirmed moderate-to-good successes of the approach with area under the curve values: 0.946 for bog, 0.951 for sedge fen, and 0.999 for eutrophic fen. Clusters of spectrally separable cohesive communities existed but they gradually changed from one plant association to another. Thus fuzzy mapping from hyperspectral and possible complementary data with well performing support vector machines could be justified in spatially continuous inventory and monitoring of boreal peatlands at regional, landscape or national scales." @default.
- W2036367059 created "2016-06-24" @default.
- W2036367059 creator A5004911625 @default.
- W2036367059 creator A5005046223 @default.
- W2036367059 creator A5014391715 @default.
- W2036367059 creator A5014721704 @default.
- W2036367059 creator A5025556392 @default.
- W2036367059 creator A5043761294 @default.
- W2036367059 creator A5069801533 @default.
- W2036367059 date "2012-09-01" @default.
- W2036367059 modified "2023-10-13" @default.
- W2036367059 title "Ordination and hyperspectral remote sensing approach to classify peatland biotopes along soil moisture and fertility gradients" @default.
- W2036367059 cites W1492160698 @default.
- W2036367059 cites W1552647955 @default.
- W2036367059 cites W1876016586 @default.
- W2036367059 cites W1965173367 @default.
- W2036367059 cites W1966499068 @default.
- W2036367059 cites W1966742379 @default.
- W2036367059 cites W1967702193 @default.
- W2036367059 cites W1971744648 @default.
- W2036367059 cites W1975710729 @default.
- W2036367059 cites W1983727982 @default.
- W2036367059 cites W1988963177 @default.
- W2036367059 cites W1990423583 @default.
- W2036367059 cites W1994983576 @default.
- W2036367059 cites W2012376022 @default.
- W2036367059 cites W2017173309 @default.
- W2036367059 cites W2018027183 @default.
- W2036367059 cites W2018131258 @default.
- W2036367059 cites W2021079894 @default.
- W2036367059 cites W2021173885 @default.
- W2036367059 cites W2024968541 @default.
- W2036367059 cites W2025133204 @default.
- W2036367059 cites W2057820360 @default.
- W2036367059 cites W2058613582 @default.
- W2036367059 cites W2059199983 @default.
- W2036367059 cites W2063907334 @default.
- W2036367059 cites W2065012928 @default.
- W2036367059 cites W2066719378 @default.
- W2036367059 cites W2076834037 @default.
- W2036367059 cites W2081964130 @default.
- W2036367059 cites W2082880010 @default.
- W2036367059 cites W2087869667 @default.
- W2036367059 cites W2091258541 @default.
- W2036367059 cites W2093051994 @default.
- W2036367059 cites W2098105438 @default.
- W2036367059 cites W2105895656 @default.
- W2036367059 cites W2105908409 @default.
- W2036367059 cites W2111081357 @default.
- W2036367059 cites W2118823101 @default.
- W2036367059 cites W2124155637 @default.
- W2036367059 cites W2129882004 @default.
- W2036367059 cites W2131627717 @default.
- W2036367059 cites W2136251662 @default.
- W2036367059 cites W2139212933 @default.
- W2036367059 cites W2144819008 @default.
- W2036367059 cites W2145126338 @default.
- W2036367059 cites W2147618390 @default.
- W2036367059 cites W2154506590 @default.
- W2036367059 cites W2160841761 @default.
- W2036367059 cites W2165606678 @default.
- W2036367059 cites W2167941657 @default.
- W2036367059 cites W2323977491 @default.
- W2036367059 cites W2795386440 @default.
- W2036367059 cites W3043877689 @default.
- W2036367059 cites W4256587863 @default.
- W2036367059 cites W656678068 @default.
- W2036367059 doi "https://doi.org/10.1016/j.rse.2012.06.010" @default.
- W2036367059 hasPublicationYear "2012" @default.
- W2036367059 type Work @default.
- W2036367059 sameAs 2036367059 @default.
- W2036367059 citedByCount "37" @default.
- W2036367059 countsByYear W20363670592013 @default.
- W2036367059 countsByYear W20363670592014 @default.
- W2036367059 countsByYear W20363670592015 @default.
- W2036367059 countsByYear W20363670592016 @default.
- W2036367059 countsByYear W20363670592017 @default.
- W2036367059 countsByYear W20363670592018 @default.
- W2036367059 countsByYear W20363670592019 @default.
- W2036367059 countsByYear W20363670592020 @default.
- W2036367059 countsByYear W20363670592021 @default.
- W2036367059 countsByYear W20363670592022 @default.
- W2036367059 countsByYear W20363670592023 @default.
- W2036367059 crossrefType "journal-article" @default.
- W2036367059 hasAuthorship W2036367059A5004911625 @default.
- W2036367059 hasAuthorship W2036367059A5005046223 @default.
- W2036367059 hasAuthorship W2036367059A5014391715 @default.
- W2036367059 hasAuthorship W2036367059A5014721704 @default.
- W2036367059 hasAuthorship W2036367059A5025556392 @default.
- W2036367059 hasAuthorship W2036367059A5043761294 @default.
- W2036367059 hasAuthorship W2036367059A5069801533 @default.
- W2036367059 hasConcept C102720910 @default.
- W2036367059 hasConcept C142724271 @default.
- W2036367059 hasConcept C175570560 @default.
- W2036367059 hasConcept C18903297 @default.
- W2036367059 hasConcept C20450499 @default.
- W2036367059 hasConcept C205649164 @default.
- W2036367059 hasConcept C2776133958 @default.