Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036385488> ?p ?o ?g. }
- W2036385488 endingPage "129" @default.
- W2036385488 startingPage "121" @default.
- W2036385488 abstract "After preforming by selective laser sintering and subsequently post-heating at 1000 °C and 1200 °C, porous Ti–Mo alloys with 4, 6 and 8 wt.% Mo contents display two characteristic porous structures that include three-dimensionally interconnected pores and mutually isolated pores, respectively. The cell walls exhibit a lamellar microstructure that comprises dominant α and minimal β phases at room temperature. The porous alloys experience a linear elastic deformation followed by a long plastic yield up to a peak stress and then fracture eventually under compressive loading. The mechanical properties are improved with the decrease of porosity. During potentiodynamic polarization, the high porous samples undergo several active–passive transitions prior to passivation, while the low porous samples convert directly from Tafel to passive region. The impedance data show that the passive film formed on surface of porous alloys possesses a duplex structure that consists of a barrier inner layer and a porous out layer, and the corrosion protective performance is mainly provided by the barrier layer. The electrochemical results indicate that a more porous sample is more liable to corrosion attack than a less porous one. Both mechanical properties and corrosion resistance show strong dependence on porous characteristics." @default.
- W2036385488 created "2016-06-24" @default.
- W2036385488 creator A5009517272 @default.
- W2036385488 creator A5025703138 @default.
- W2036385488 creator A5057595156 @default.
- W2036385488 creator A5066655658 @default.
- W2036385488 creator A5073931088 @default.
- W2036385488 date "2013-08-01" @default.
- W2036385488 modified "2023-10-06" @default.
- W2036385488 title "Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti–Mo alloys for biomedical applications" @default.
- W2036385488 cites W1813791122 @default.
- W2036385488 cites W1964809957 @default.
- W2036385488 cites W1972788027 @default.
- W2036385488 cites W1973097211 @default.
- W2036385488 cites W1978326074 @default.
- W2036385488 cites W1978616686 @default.
- W2036385488 cites W1982179020 @default.
- W2036385488 cites W1983132644 @default.
- W2036385488 cites W1985084042 @default.
- W2036385488 cites W1990393678 @default.
- W2036385488 cites W1991589030 @default.
- W2036385488 cites W1993718969 @default.
- W2036385488 cites W1998854873 @default.
- W2036385488 cites W2006991257 @default.
- W2036385488 cites W2008476090 @default.
- W2036385488 cites W2010251986 @default.
- W2036385488 cites W2010369679 @default.
- W2036385488 cites W2010473896 @default.
- W2036385488 cites W2013799197 @default.
- W2036385488 cites W2015246294 @default.
- W2036385488 cites W2015258764 @default.
- W2036385488 cites W2028925902 @default.
- W2036385488 cites W2030684141 @default.
- W2036385488 cites W2031392125 @default.
- W2036385488 cites W2034330670 @default.
- W2036385488 cites W2035431138 @default.
- W2036385488 cites W2035513712 @default.
- W2036385488 cites W2037130983 @default.
- W2036385488 cites W2037752923 @default.
- W2036385488 cites W2037902515 @default.
- W2036385488 cites W2040349753 @default.
- W2036385488 cites W2050187044 @default.
- W2036385488 cites W2050199064 @default.
- W2036385488 cites W2050449567 @default.
- W2036385488 cites W2053112727 @default.
- W2036385488 cites W2053953734 @default.
- W2036385488 cites W2057031483 @default.
- W2036385488 cites W2061693623 @default.
- W2036385488 cites W2069872175 @default.
- W2036385488 cites W2072977799 @default.
- W2036385488 cites W2073038794 @default.
- W2036385488 cites W2087616431 @default.
- W2036385488 cites W2089325002 @default.
- W2036385488 cites W2091901002 @default.
- W2036385488 cites W2092223228 @default.
- W2036385488 cites W2092902319 @default.
- W2036385488 cites W2112204012 @default.
- W2036385488 cites W2125610337 @default.
- W2036385488 cites W2130683541 @default.
- W2036385488 cites W2148975840 @default.
- W2036385488 cites W2159099737 @default.
- W2036385488 cites W2161038688 @default.
- W2036385488 doi "https://doi.org/10.1016/j.electacta.2013.04.105" @default.
- W2036385488 hasPublicationYear "2013" @default.
- W2036385488 type Work @default.
- W2036385488 sameAs 2036385488 @default.
- W2036385488 citedByCount "107" @default.
- W2036385488 countsByYear W20363854882014 @default.
- W2036385488 countsByYear W20363854882015 @default.
- W2036385488 countsByYear W20363854882016 @default.
- W2036385488 countsByYear W20363854882017 @default.
- W2036385488 countsByYear W20363854882018 @default.
- W2036385488 countsByYear W20363854882019 @default.
- W2036385488 countsByYear W20363854882020 @default.
- W2036385488 countsByYear W20363854882021 @default.
- W2036385488 countsByYear W20363854882022 @default.
- W2036385488 countsByYear W20363854882023 @default.
- W2036385488 crossrefType "journal-article" @default.
- W2036385488 hasAuthorship W2036385488A5009517272 @default.
- W2036385488 hasAuthorship W2036385488A5025703138 @default.
- W2036385488 hasAuthorship W2036385488A5057595156 @default.
- W2036385488 hasAuthorship W2036385488A5066655658 @default.
- W2036385488 hasAuthorship W2036385488A5073931088 @default.
- W2036385488 hasConcept C105569014 @default.
- W2036385488 hasConcept C147789679 @default.
- W2036385488 hasConcept C159985019 @default.
- W2036385488 hasConcept C172404476 @default.
- W2036385488 hasConcept C17525397 @default.
- W2036385488 hasConcept C185592680 @default.
- W2036385488 hasConcept C191897082 @default.
- W2036385488 hasConcept C192562407 @default.
- W2036385488 hasConcept C20625102 @default.
- W2036385488 hasConcept C2777581544 @default.
- W2036385488 hasConcept C2779227376 @default.
- W2036385488 hasConcept C33574316 @default.
- W2036385488 hasConcept C52859227 @default.
- W2036385488 hasConcept C6648577 @default.
- W2036385488 hasConcept C77851909 @default.