Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036492477> ?p ?o ?g. }
- W2036492477 endingPage "431" @default.
- W2036492477 startingPage "407" @default.
- W2036492477 abstract "Weathering of metal-sulfide minerals produces suites of variably soluble efflorescent sulfate salts at a number of localities in the eastern United States. The salts, which are present on mine wastes, tailings piles, and outcrops, include minerals that incorporate heavy metals in solid solution, primarily the highly soluble members of the melanterite, rozenite, epsomite, halotrichite, and copiapite groups. The minerals were identified by a combination of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron-microprobe. Base-metal salts are rare at these localities, and Cu, Zn, and Co are commonly sequestered as solid solutions within Fe- and Fe–Al sulfate minerals. Salt dissolution affects the surface-water chemistry at abandoned mines that exploited the massive sulfide deposits in the Vermont copper belt, the Mineral district of central Virginia, the Copper Basin (Ducktown) mining district of Tennessee, and where sulfide-bearing metamorphic rocks undisturbed by mining are exposed in Great Smoky Mountains National Park in North Carolina and Tennessee. Dissolution experiments on composite salt samples from three minesites and two outcrops of metamorphic rock showed that, in all cases, the pH of the leachates rapidly declined from 6.9 to <3.7, and specific conductance increased gradually over 24 h. Leachates analyzed after 24-h dissolution experiments indicated that all of the salts provided ready sources of dissolved Al (>30 mg L−1), Fe (>47 mg L−1), sulfate (>1000 mg L−1), and base metals (>1000 mg L−1 for minesites, and 2 mg L−1 for other sites). Geochemical modeling of surface waters, mine-waste leachates, and salt leachates using PHREEQC software predicted saturation in the observed ochre minerals, but significant concentration by evaporation would be needed to reach saturation in most of the sulfate salts. Periodic surface-water monitoring at Vermont minesites indicated peak annual metal loads during spring runoff. At the Virginia site, where no winter-long snowpack develops, metal loads were highest during summer months when salts were dissolved periodically by rainstorms following sustained evaporation during dry spells. Despite the relatively humid climate of the eastern United States, where precipitation typically exceeds evaporation, salts form intermittently in open areas, persist in protected areas when temperature and relative humidity are appropriate, and contribute to metal loadings and acidity in surface waters upon dissolution, thereby causing short-term perturbations in water quality." @default.
- W2036492477 created "2016-06-24" @default.
- W2036492477 creator A5009221039 @default.
- W2036492477 creator A5011144281 @default.
- W2036492477 creator A5076479331 @default.
- W2036492477 creator A5086220081 @default.
- W2036492477 date "2005-02-01" @default.
- W2036492477 modified "2023-10-02" @default.
- W2036492477 title "Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments" @default.
- W2036492477 cites W1044234462 @default.
- W2036492477 cites W1547899069 @default.
- W2036492477 cites W156374387 @default.
- W2036492477 cites W1601630492 @default.
- W2036492477 cites W1603406408 @default.
- W2036492477 cites W1790743573 @default.
- W2036492477 cites W1977940781 @default.
- W2036492477 cites W1979966014 @default.
- W2036492477 cites W2002755751 @default.
- W2036492477 cites W2006804649 @default.
- W2036492477 cites W2017198003 @default.
- W2036492477 cites W2026095889 @default.
- W2036492477 cites W2037939742 @default.
- W2036492477 cites W2044258167 @default.
- W2036492477 cites W2044581429 @default.
- W2036492477 cites W2062192005 @default.
- W2036492477 cites W2062992360 @default.
- W2036492477 cites W2067478087 @default.
- W2036492477 cites W2083896486 @default.
- W2036492477 cites W2085795380 @default.
- W2036492477 cites W2087115310 @default.
- W2036492477 cites W2088561581 @default.
- W2036492477 cites W2095365464 @default.
- W2036492477 cites W2139412699 @default.
- W2036492477 cites W2142501652 @default.
- W2036492477 cites W2147396432 @default.
- W2036492477 cites W2167987599 @default.
- W2036492477 cites W2303837820 @default.
- W2036492477 cites W2323629013 @default.
- W2036492477 cites W2323926908 @default.
- W2036492477 cites W2327620632 @default.
- W2036492477 cites W2464426383 @default.
- W2036492477 cites W3200148348 @default.
- W2036492477 cites W4241527174 @default.
- W2036492477 doi "https://doi.org/10.1016/j.chemgeo.2004.06.053" @default.
- W2036492477 hasPublicationYear "2005" @default.
- W2036492477 type Work @default.
- W2036492477 sameAs 2036492477 @default.
- W2036492477 citedByCount "283" @default.
- W2036492477 countsByYear W20364924772012 @default.
- W2036492477 countsByYear W20364924772013 @default.
- W2036492477 countsByYear W20364924772014 @default.
- W2036492477 countsByYear W20364924772015 @default.
- W2036492477 countsByYear W20364924772016 @default.
- W2036492477 countsByYear W20364924772017 @default.
- W2036492477 countsByYear W20364924772018 @default.
- W2036492477 countsByYear W20364924772019 @default.
- W2036492477 countsByYear W20364924772020 @default.
- W2036492477 countsByYear W20364924772021 @default.
- W2036492477 countsByYear W20364924772022 @default.
- W2036492477 countsByYear W20364924772023 @default.
- W2036492477 crossrefType "journal-article" @default.
- W2036492477 hasAuthorship W2036492477A5009221039 @default.
- W2036492477 hasAuthorship W2036492477A5011144281 @default.
- W2036492477 hasAuthorship W2036492477A5076479331 @default.
- W2036492477 hasAuthorship W2036492477A5086220081 @default.
- W2036492477 hasBestOaLocation W20364924772 @default.
- W2036492477 hasConcept C107872376 @default.
- W2036492477 hasConcept C127313418 @default.
- W2036492477 hasConcept C147789679 @default.
- W2036492477 hasConcept C17409809 @default.
- W2036492477 hasConcept C178790620 @default.
- W2036492477 hasConcept C185592680 @default.
- W2036492477 hasConcept C191897082 @default.
- W2036492477 hasConcept C192562407 @default.
- W2036492477 hasConcept C19474535 @default.
- W2036492477 hasConcept C199289684 @default.
- W2036492477 hasConcept C26687426 @default.
- W2036492477 hasConcept C2776062231 @default.
- W2036492477 hasConcept C2776432453 @default.
- W2036492477 hasConcept C2778343803 @default.
- W2036492477 hasConcept C2779889824 @default.
- W2036492477 hasConcept C2780184401 @default.
- W2036492477 hasConcept C2780596425 @default.
- W2036492477 hasConcept C40241539 @default.
- W2036492477 hasConcept C40724407 @default.
- W2036492477 hasConcept C88380143 @default.
- W2036492477 hasConceptScore W2036492477C107872376 @default.
- W2036492477 hasConceptScore W2036492477C127313418 @default.
- W2036492477 hasConceptScore W2036492477C147789679 @default.
- W2036492477 hasConceptScore W2036492477C17409809 @default.
- W2036492477 hasConceptScore W2036492477C178790620 @default.
- W2036492477 hasConceptScore W2036492477C185592680 @default.
- W2036492477 hasConceptScore W2036492477C191897082 @default.
- W2036492477 hasConceptScore W2036492477C192562407 @default.
- W2036492477 hasConceptScore W2036492477C19474535 @default.
- W2036492477 hasConceptScore W2036492477C199289684 @default.
- W2036492477 hasConceptScore W2036492477C26687426 @default.
- W2036492477 hasConceptScore W2036492477C2776062231 @default.