Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036612842> ?p ?o ?g. }
- W2036612842 endingPage "260" @default.
- W2036612842 startingPage "245" @default.
- W2036612842 abstract "The Proterozoic Jaduguda U (–Cu–Fe) deposit in the Singhbhum shear zone, eastern India hosts the oldest and most productive uranium mine in India. The polymetallic ores in Jaduguda are hosted in altered, sheared and metamorphosed volcano-sedimentary rocks, and this complexity has lead to a confusion in ore genetic models for the deposit. A characteristic of the mineralization is the presence of abundant tourmaline, locally exceeding 50 vol.%, which is spatially associated with U and Cu mineralization in all rock types and its chemical and B-isotopic variations provide important constraints on fluid source(s) and ore deposit affinity. We examined tourmaline from the U–Cu ore zone and adjacent footwall and hanging wall meta-sedimentary rocks. Tourmaline grew in three different stages. Pre-kinematic Tourmaline-1, represented by fractured and porphyroblastic grains, is ubiquitous in the wall rocks and the U–Cu zone. Syn-kinematic Tourmaline-2 and post-kinematic Tourmaline-3 are found exclusively in the U–Cu zone, where intense shear deformation has focussed fluid flow, alteration and metamorphism. All tourmalines belong to the alkalic group and most are dravitic. Systematic contrasts in major element compositions between Tourmaline-1 and Tourmaline-2 are attributed to the influence of high fluid/rock ratios in the U–Cu ore zone. Tourmaline from the Jaduguda deposit exhibits a wide overall range of δ11B values from − 6.8 to + 17.2‰. Positive values of Tourmaline-1 are irrespective of host rock and ore association (U or U + Cu), and range between + 2.3 to + 17.2‰ (n = 44). The calculated δ11B values of fluid in equilibrium with this tourmaline (for mineralization temperatures of 300–450 °C) range from ~+4 to ~+20‰. The δ11B values of syn-kinematic Tourmaline-2 are much lower than Tourmaline-1, between − 6.8 and + 4‰ (n = 7) and the corresponding fluid δ11B values are − 4.8 + 6‰. The high values of δ11B for Tourmaline-1 and early fluid suggest a marine evaporite or basinal brine was the source of boron, and this fits with abundant mineralogical and geochemical evidence for highly-saline fluids during mineralization. We propose that the isotopically lighter fluid associated with Tourmaline-2 and related syn-kinematic mineralization/mobilization was derived from the metamorphic volcano-sedimentary rocks at high fluid/rock ratios in and around the shear zone. Post-kinematic Tourmaline-3 is compositionally and isotopically (δ11B = + 4 to + 11.1‰, n = 5) similar to Tourmaline-1 in the same samples, suggesting it formed by local recrystallization of the early tourmaline or from a renewed influx of saline fluids similar to those which formed the pre-kinematic mineralization. Integrating the results of this tourmaline study with the geological and geochemical characteristics of the Jaduguda U–(Cu–Fe) mineralization suggests that it is best regarded as a variant of the Fe-oxide (Cu–U–REE) or IOCG class of deposits." @default.
- W2036612842 created "2016-06-24" @default.
- W2036612842 creator A5021329352 @default.
- W2036612842 creator A5037658714 @default.
- W2036612842 creator A5086895852 @default.
- W2036612842 date "2010-10-01" @default.
- W2036612842 modified "2023-10-06" @default.
- W2036612842 title "Chemical and boron isotope compositions of tourmaline from the Jaduguda U (–Cu–Fe) deposit, Singhbhum shear zone, India: Implications for the sources and evolution of mineralizing fluids" @default.
- W2036612842 cites W1489994752 @default.
- W2036612842 cites W1529586263 @default.
- W2036612842 cites W1548900912 @default.
- W2036612842 cites W1973573652 @default.
- W2036612842 cites W1975047680 @default.
- W2036612842 cites W1982983078 @default.
- W2036612842 cites W1983846946 @default.
- W2036612842 cites W1985515464 @default.
- W2036612842 cites W1987646385 @default.
- W2036612842 cites W1992710321 @default.
- W2036612842 cites W1993130046 @default.
- W2036612842 cites W1993420118 @default.
- W2036612842 cites W1993590388 @default.
- W2036612842 cites W1995891161 @default.
- W2036612842 cites W1999726370 @default.
- W2036612842 cites W2000012172 @default.
- W2036612842 cites W2005396997 @default.
- W2036612842 cites W2006620025 @default.
- W2036612842 cites W2032092967 @default.
- W2036612842 cites W2040088969 @default.
- W2036612842 cites W2047815021 @default.
- W2036612842 cites W2048251070 @default.
- W2036612842 cites W2054908076 @default.
- W2036612842 cites W2054913198 @default.
- W2036612842 cites W2056537930 @default.
- W2036612842 cites W2062525122 @default.
- W2036612842 cites W2078305653 @default.
- W2036612842 cites W2082173363 @default.
- W2036612842 cites W2084789213 @default.
- W2036612842 cites W2092262923 @default.
- W2036612842 cites W2094516722 @default.
- W2036612842 cites W2095561149 @default.
- W2036612842 cites W2103846811 @default.
- W2036612842 cites W2106852166 @default.
- W2036612842 cites W2136231821 @default.
- W2036612842 cites W2152216882 @default.
- W2036612842 cites W2154047124 @default.
- W2036612842 cites W2154804984 @default.
- W2036612842 cites W2155605742 @default.
- W2036612842 cites W2160681954 @default.
- W2036612842 cites W2170634279 @default.
- W2036612842 cites W2341404763 @default.
- W2036612842 cites W4296929067 @default.
- W2036612842 cites W83901612 @default.
- W2036612842 doi "https://doi.org/10.1016/j.chemgeo.2010.08.008" @default.
- W2036612842 hasPublicationYear "2010" @default.
- W2036612842 type Work @default.
- W2036612842 sameAs 2036612842 @default.
- W2036612842 citedByCount "76" @default.
- W2036612842 countsByYear W20366128422012 @default.
- W2036612842 countsByYear W20366128422013 @default.
- W2036612842 countsByYear W20366128422014 @default.
- W2036612842 countsByYear W20366128422015 @default.
- W2036612842 countsByYear W20366128422016 @default.
- W2036612842 countsByYear W20366128422017 @default.
- W2036612842 countsByYear W20366128422018 @default.
- W2036612842 countsByYear W20366128422019 @default.
- W2036612842 countsByYear W20366128422020 @default.
- W2036612842 countsByYear W20366128422021 @default.
- W2036612842 countsByYear W20366128422022 @default.
- W2036612842 countsByYear W20366128422023 @default.
- W2036612842 crossrefType "journal-article" @default.
- W2036612842 hasAuthorship W2036612842A5021329352 @default.
- W2036612842 hasAuthorship W2036612842A5037658714 @default.
- W2036612842 hasAuthorship W2036612842A5086895852 @default.
- W2036612842 hasBestOaLocation W20366128422 @default.
- W2036612842 hasConcept C111696902 @default.
- W2036612842 hasConcept C112764850 @default.
- W2036612842 hasConcept C127313418 @default.
- W2036612842 hasConcept C138170599 @default.
- W2036612842 hasConcept C151730666 @default.
- W2036612842 hasConcept C159390177 @default.
- W2036612842 hasConcept C159750122 @default.
- W2036612842 hasConcept C167919410 @default.
- W2036612842 hasConcept C173776410 @default.
- W2036612842 hasConcept C17409809 @default.
- W2036612842 hasConcept C199289684 @default.
- W2036612842 hasConcept C23295444 @default.
- W2036612842 hasConcept C2777980256 @default.
- W2036612842 hasConcept C5900021 @default.
- W2036612842 hasConcept C6494504 @default.
- W2036612842 hasConcept C67236022 @default.
- W2036612842 hasConcept C77928131 @default.
- W2036612842 hasConcept C93033518 @default.
- W2036612842 hasConcept C96035792 @default.
- W2036612842 hasConceptScore W2036612842C111696902 @default.
- W2036612842 hasConceptScore W2036612842C112764850 @default.
- W2036612842 hasConceptScore W2036612842C127313418 @default.
- W2036612842 hasConceptScore W2036612842C138170599 @default.
- W2036612842 hasConceptScore W2036612842C151730666 @default.