Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036680871> ?p ?o ?g. }
- W2036680871 endingPage "2495" @default.
- W2036680871 startingPage "2467" @default.
- W2036680871 abstract "A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K) and 400 W/(m·K), respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon); one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K). Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity." @default.
- W2036680871 created "2016-06-24" @default.
- W2036680871 creator A5015700678 @default.
- W2036680871 creator A5023892988 @default.
- W2036680871 date "2009-12-21" @default.
- W2036680871 modified "2023-10-16" @default.
- W2036680871 title "Thermal Conductivity of Diamond Composites" @default.
- W2036680871 cites W145473370 @default.
- W2036680871 cites W1493035689 @default.
- W2036680871 cites W154958669 @default.
- W2036680871 cites W1588705072 @default.
- W2036680871 cites W1965453986 @default.
- W2036680871 cites W1965904439 @default.
- W2036680871 cites W1971811783 @default.
- W2036680871 cites W1973095991 @default.
- W2036680871 cites W1973506057 @default.
- W2036680871 cites W1973762610 @default.
- W2036680871 cites W1976431068 @default.
- W2036680871 cites W1976523827 @default.
- W2036680871 cites W1976641702 @default.
- W2036680871 cites W1977080406 @default.
- W2036680871 cites W1978836937 @default.
- W2036680871 cites W1979195180 @default.
- W2036680871 cites W1979639259 @default.
- W2036680871 cites W1981444126 @default.
- W2036680871 cites W1984173031 @default.
- W2036680871 cites W1985261292 @default.
- W2036680871 cites W1985385082 @default.
- W2036680871 cites W1985843992 @default.
- W2036680871 cites W1986850546 @default.
- W2036680871 cites W1990702337 @default.
- W2036680871 cites W1991227480 @default.
- W2036680871 cites W1991939199 @default.
- W2036680871 cites W1992143917 @default.
- W2036680871 cites W1994605480 @default.
- W2036680871 cites W1996189529 @default.
- W2036680871 cites W1996206153 @default.
- W2036680871 cites W1996464890 @default.
- W2036680871 cites W1997014239 @default.
- W2036680871 cites W1997843726 @default.
- W2036680871 cites W2001993795 @default.
- W2036680871 cites W2002784298 @default.
- W2036680871 cites W2003233323 @default.
- W2036680871 cites W2007605118 @default.
- W2036680871 cites W2011096179 @default.
- W2036680871 cites W2013374381 @default.
- W2036680871 cites W2014943095 @default.
- W2036680871 cites W2014979704 @default.
- W2036680871 cites W2016713010 @default.
- W2036680871 cites W2017015578 @default.
- W2036680871 cites W2018274694 @default.
- W2036680871 cites W2024227583 @default.
- W2036680871 cites W2024402682 @default.
- W2036680871 cites W2028486006 @default.
- W2036680871 cites W2038164033 @default.
- W2036680871 cites W2038546191 @default.
- W2036680871 cites W2039992992 @default.
- W2036680871 cites W2040422288 @default.
- W2036680871 cites W2043522373 @default.
- W2036680871 cites W2044268570 @default.
- W2036680871 cites W2045649603 @default.
- W2036680871 cites W2050455575 @default.
- W2036680871 cites W2051850482 @default.
- W2036680871 cites W2052014762 @default.
- W2036680871 cites W2054710278 @default.
- W2036680871 cites W2056128375 @default.
- W2036680871 cites W2056300942 @default.
- W2036680871 cites W2058135277 @default.
- W2036680871 cites W2058956721 @default.
- W2036680871 cites W2059921435 @default.
- W2036680871 cites W2061597232 @default.
- W2036680871 cites W2065160755 @default.
- W2036680871 cites W2069369898 @default.
- W2036680871 cites W2069394183 @default.
- W2036680871 cites W2075359420 @default.
- W2036680871 cites W2080105141 @default.
- W2036680871 cites W2080405696 @default.
- W2036680871 cites W2081035389 @default.
- W2036680871 cites W2081224127 @default.
- W2036680871 cites W2081882688 @default.
- W2036680871 cites W2083157414 @default.
- W2036680871 cites W2086806466 @default.
- W2036680871 cites W2090070808 @default.
- W2036680871 cites W2091830839 @default.
- W2036680871 cites W2092526725 @default.
- W2036680871 cites W2102120105 @default.
- W2036680871 cites W2104428014 @default.
- W2036680871 cites W2106993129 @default.
- W2036680871 cites W2110867280 @default.
- W2036680871 cites W2111105379 @default.
- W2036680871 cites W2148313630 @default.
- W2036680871 cites W2158437421 @default.
- W2036680871 cites W2162251197 @default.
- W2036680871 cites W2166254811 @default.
- W2036680871 cites W2169884320 @default.
- W2036680871 cites W2329086761 @default.
- W2036680871 doi "https://doi.org/10.3390/ma2042467" @default.
- W2036680871 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5513588" @default.