Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036681246> ?p ?o ?g. }
- W2036681246 endingPage "208" @default.
- W2036681246 startingPage "191" @default.
- W2036681246 abstract "Wind speed forecasting is important for the security of wind power integration. Based on the theories of wavelet, wavelet packet, time series analysis and artificial neural networks, three hybrid models [Wavelet Packet-BFGS, Wavelet Packet-ARIMA-BFGS and Wavelet-BFGS] are proposed to predict the wind speed. The presented models are compared with some other classical wind speed forecasting methods including Neuro-Fuzzy, ANFIS (Adaptive Neuro-Fuzzy Inference Systems), Wavelet Packet-RBF (Radial Basis Function) and PM (Persistent Model). The results of three experimental cases show that: (1) the proposed three hybrid models have satisfactory performance in the wind speed predictions, and (2) the Wavelet Packet-ANN model is the best among them." @default.
- W2036681246 created "2016-06-24" @default.
- W2036681246 creator A5021038916 @default.
- W2036681246 creator A5036650879 @default.
- W2036681246 creator A5044301848 @default.
- W2036681246 creator A5052814323 @default.
- W2036681246 date "2013-07-01" @default.
- W2036681246 modified "2023-10-10" @default.
- W2036681246 title "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks" @default.
- W2036681246 cites W1970978817 @default.
- W2036681246 cites W1976026023 @default.
- W2036681246 cites W1977587074 @default.
- W2036681246 cites W1977653081 @default.
- W2036681246 cites W1979331645 @default.
- W2036681246 cites W1985727987 @default.
- W2036681246 cites W1989092102 @default.
- W2036681246 cites W1994170512 @default.
- W2036681246 cites W1995139569 @default.
- W2036681246 cites W1998559503 @default.
- W2036681246 cites W2011032294 @default.
- W2036681246 cites W2019207321 @default.
- W2036681246 cites W2019543807 @default.
- W2036681246 cites W2022912953 @default.
- W2036681246 cites W2026668451 @default.
- W2036681246 cites W2028895866 @default.
- W2036681246 cites W2033852689 @default.
- W2036681246 cites W2048340369 @default.
- W2036681246 cites W2051086873 @default.
- W2036681246 cites W2056947743 @default.
- W2036681246 cites W2060606400 @default.
- W2036681246 cites W2067201152 @default.
- W2036681246 cites W2073004501 @default.
- W2036681246 cites W2074715647 @default.
- W2036681246 cites W2076083474 @default.
- W2036681246 cites W2077031811 @default.
- W2036681246 cites W2083091991 @default.
- W2036681246 cites W2086639994 @default.
- W2036681246 cites W2095499778 @default.
- W2036681246 cites W2121067351 @default.
- W2036681246 cites W2129645442 @default.
- W2036681246 cites W2132591205 @default.
- W2036681246 cites W2132984323 @default.
- W2036681246 cites W2140910096 @default.
- W2036681246 cites W2155387335 @default.
- W2036681246 cites W2158224578 @default.
- W2036681246 cites W2179681156 @default.
- W2036681246 doi "https://doi.org/10.1016/j.apenergy.2013.02.002" @default.
- W2036681246 hasPublicationYear "2013" @default.
- W2036681246 type Work @default.
- W2036681246 sameAs 2036681246 @default.
- W2036681246 citedByCount "271" @default.
- W2036681246 countsByYear W20366812462013 @default.
- W2036681246 countsByYear W20366812462014 @default.
- W2036681246 countsByYear W20366812462015 @default.
- W2036681246 countsByYear W20366812462016 @default.
- W2036681246 countsByYear W20366812462017 @default.
- W2036681246 countsByYear W20366812462018 @default.
- W2036681246 countsByYear W20366812462019 @default.
- W2036681246 countsByYear W20366812462020 @default.
- W2036681246 countsByYear W20366812462021 @default.
- W2036681246 countsByYear W20366812462022 @default.
- W2036681246 countsByYear W20366812462023 @default.
- W2036681246 crossrefType "journal-article" @default.
- W2036681246 hasAuthorship W2036681246A5021038916 @default.
- W2036681246 hasAuthorship W2036681246A5036650879 @default.
- W2036681246 hasAuthorship W2036681246A5044301848 @default.
- W2036681246 hasAuthorship W2036681246A5052814323 @default.
- W2036681246 hasConcept C119857082 @default.
- W2036681246 hasConcept C121332964 @default.
- W2036681246 hasConcept C151406439 @default.
- W2036681246 hasConcept C153180895 @default.
- W2036681246 hasConcept C153294291 @default.
- W2036681246 hasConcept C154945302 @default.
- W2036681246 hasConcept C155777637 @default.
- W2036681246 hasConcept C161067210 @default.
- W2036681246 hasConcept C186108316 @default.
- W2036681246 hasConcept C195975749 @default.
- W2036681246 hasConcept C196216189 @default.
- W2036681246 hasConcept C24338571 @default.
- W2036681246 hasConcept C41008148 @default.
- W2036681246 hasConcept C46286280 @default.
- W2036681246 hasConcept C47432892 @default.
- W2036681246 hasConcept C58166 @default.
- W2036681246 hasConcept C88829872 @default.
- W2036681246 hasConceptScore W2036681246C119857082 @default.
- W2036681246 hasConceptScore W2036681246C121332964 @default.
- W2036681246 hasConceptScore W2036681246C151406439 @default.
- W2036681246 hasConceptScore W2036681246C153180895 @default.
- W2036681246 hasConceptScore W2036681246C153294291 @default.
- W2036681246 hasConceptScore W2036681246C154945302 @default.
- W2036681246 hasConceptScore W2036681246C155777637 @default.
- W2036681246 hasConceptScore W2036681246C161067210 @default.
- W2036681246 hasConceptScore W2036681246C186108316 @default.
- W2036681246 hasConceptScore W2036681246C195975749 @default.
- W2036681246 hasConceptScore W2036681246C196216189 @default.
- W2036681246 hasConceptScore W2036681246C24338571 @default.
- W2036681246 hasConceptScore W2036681246C41008148 @default.
- W2036681246 hasConceptScore W2036681246C46286280 @default.