Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036691366> ?p ?o ?g. }
- W2036691366 endingPage "56" @default.
- W2036691366 startingPage "46" @default.
- W2036691366 abstract "In digital image correlation, the sub-pixel intensity interpolation causes a systematic error in the measured displacements. The error increases toward high-frequency component of the speckle pattern. In practice, a captured image is usually corrupted by additive white noise. The noise introduces additional energy in the high frequencies and therefore raises the systematic error. Meanwhile, the noise also elevates the random error which increases with the noise power. In order to reduce the systematic error and the random error of the measurements, we apply a pre-filtering to the images prior to the correlation so that the high-frequency contents are suppressed. Two spatial-domain filters (binomial and Gaussian) and two frequency-domain filters (Butterworth and Wiener) are tested on speckle images undergoing both simulated and real-world translations. By evaluating the errors of the various combinations of speckle patterns, interpolators, noise levels, and filter configurations, we come to the following conclusions. All the four filters are able to reduce the systematic error. Meanwhile, the random error can also be reduced if the signal power is mainly distributed around DC. For high-frequency speckle patterns, the low-pass filters (binomial, Gaussian and Butterworth) slightly increase the random error and Butterworth filter produces the lowest random error among them. By using Wiener filter with over-estimated noise power, the random error can be reduced but the resultant systematic error is higher than that of low-pass filters. In general, Butterworth filter is recommended for error reduction due to its flexibility of passband selection and maximal preservation of the allowed frequencies. Binomial filter enables efficient implementation and thus becomes a good option if computational cost is a critical issue. While used together with pre-filtering, B-spline interpolator produces lower systematic error than bicubic interpolator and similar level of the random error. Cubic B-spline interpolator can achieve comparable efficiency as bicubic interpolator, while quintic B-spline interpolator requires about 1.5 times the running time." @default.
- W2036691366 created "2016-06-24" @default.
- W2036691366 creator A5038133942 @default.
- W2036691366 creator A5060145891 @default.
- W2036691366 creator A5065479699 @default.
- W2036691366 creator A5071038974 @default.
- W2036691366 date "2015-02-01" @default.
- W2036691366 modified "2023-10-18" @default.
- W2036691366 title "Image pre-filtering for measurement error reduction in digital image correlation" @default.
- W2036691366 cites W1982401282 @default.
- W2036691366 cites W1991692264 @default.
- W2036691366 cites W2009655690 @default.
- W2036691366 cites W2022947042 @default.
- W2036691366 cites W2030367672 @default.
- W2036691366 cites W2031844114 @default.
- W2036691366 cites W2035701594 @default.
- W2036691366 cites W2039766870 @default.
- W2036691366 cites W2055887060 @default.
- W2036691366 cites W2057727857 @default.
- W2036691366 cites W2058668249 @default.
- W2036691366 cites W2063509315 @default.
- W2036691366 cites W2065259938 @default.
- W2036691366 cites W2071755981 @default.
- W2036691366 cites W2072627339 @default.
- W2036691366 cites W2073431334 @default.
- W2036691366 cites W2079360897 @default.
- W2036691366 cites W2086778442 @default.
- W2036691366 cites W2088064908 @default.
- W2036691366 cites W2088375041 @default.
- W2036691366 cites W2090994319 @default.
- W2036691366 cites W2092572951 @default.
- W2036691366 cites W2113190056 @default.
- W2036691366 doi "https://doi.org/10.1016/j.optlaseng.2014.04.018" @default.
- W2036691366 hasPublicationYear "2015" @default.
- W2036691366 type Work @default.
- W2036691366 sameAs 2036691366 @default.
- W2036691366 citedByCount "39" @default.
- W2036691366 countsByYear W20366913662015 @default.
- W2036691366 countsByYear W20366913662016 @default.
- W2036691366 countsByYear W20366913662017 @default.
- W2036691366 countsByYear W20366913662018 @default.
- W2036691366 countsByYear W20366913662019 @default.
- W2036691366 countsByYear W20366913662020 @default.
- W2036691366 countsByYear W20366913662021 @default.
- W2036691366 countsByYear W20366913662022 @default.
- W2036691366 countsByYear W20366913662023 @default.
- W2036691366 crossrefType "journal-article" @default.
- W2036691366 hasAuthorship W2036691366A5038133942 @default.
- W2036691366 hasAuthorship W2036691366A5060145891 @default.
- W2036691366 hasAuthorship W2036691366A5065479699 @default.
- W2036691366 hasAuthorship W2036691366A5071038974 @default.
- W2036691366 hasConcept C102290492 @default.
- W2036691366 hasConcept C106131492 @default.
- W2036691366 hasConcept C11413529 @default.
- W2036691366 hasConcept C115961682 @default.
- W2036691366 hasConcept C120665830 @default.
- W2036691366 hasConcept C121332964 @default.
- W2036691366 hasConcept C147788027 @default.
- W2036691366 hasConcept C154945302 @default.
- W2036691366 hasConcept C156137958 @default.
- W2036691366 hasConcept C180940675 @default.
- W2036691366 hasConcept C18537770 @default.
- W2036691366 hasConcept C31972630 @default.
- W2036691366 hasConcept C33923547 @default.
- W2036691366 hasConcept C41008148 @default.
- W2036691366 hasConcept C4199805 @default.
- W2036691366 hasConcept C44682112 @default.
- W2036691366 hasConcept C46416853 @default.
- W2036691366 hasConcept C70757512 @default.
- W2036691366 hasConcept C99498987 @default.
- W2036691366 hasConceptScore W2036691366C102290492 @default.
- W2036691366 hasConceptScore W2036691366C106131492 @default.
- W2036691366 hasConceptScore W2036691366C11413529 @default.
- W2036691366 hasConceptScore W2036691366C115961682 @default.
- W2036691366 hasConceptScore W2036691366C120665830 @default.
- W2036691366 hasConceptScore W2036691366C121332964 @default.
- W2036691366 hasConceptScore W2036691366C147788027 @default.
- W2036691366 hasConceptScore W2036691366C154945302 @default.
- W2036691366 hasConceptScore W2036691366C156137958 @default.
- W2036691366 hasConceptScore W2036691366C180940675 @default.
- W2036691366 hasConceptScore W2036691366C18537770 @default.
- W2036691366 hasConceptScore W2036691366C31972630 @default.
- W2036691366 hasConceptScore W2036691366C33923547 @default.
- W2036691366 hasConceptScore W2036691366C41008148 @default.
- W2036691366 hasConceptScore W2036691366C4199805 @default.
- W2036691366 hasConceptScore W2036691366C44682112 @default.
- W2036691366 hasConceptScore W2036691366C46416853 @default.
- W2036691366 hasConceptScore W2036691366C70757512 @default.
- W2036691366 hasConceptScore W2036691366C99498987 @default.
- W2036691366 hasFunder F4320321001 @default.
- W2036691366 hasLocation W20366913661 @default.
- W2036691366 hasOpenAccess W2036691366 @default.
- W2036691366 hasPrimaryLocation W20366913661 @default.
- W2036691366 hasRelatedWork W1990976311 @default.
- W2036691366 hasRelatedWork W2182158460 @default.
- W2036691366 hasRelatedWork W2256959580 @default.
- W2036691366 hasRelatedWork W2290579389 @default.
- W2036691366 hasRelatedWork W2356609824 @default.