Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036694619> ?p ?o ?g. }
- W2036694619 abstract "Estrogen receptor status and the pathologic response to preoperative chemotherapy are two important indicators of chemotherapeutic sensitivity of tumors in breast cancer, which are used to guide the selection of specific regimens for patients. Microarray-based gene expression profiling, which is successfully applied to the discovery of tumor biomarkers and the prediction of drug response, was suggested to predict the cancer outcomes using the gene signatures differentially expressed between two clinical states. However, many false positive genes unrelated to the phenotypic differences will be involved in the lists of differentially expressed genes (DEGs) when only using the statistical methods for gene selection, e.g. Student's t test, and subsequently affect the performance of the predictive models. For the purpose of improving the prediction of clinical outcomes, we optimized the selection of DEGs by using a combined strategy, for which the DEGs were firstly identified by the statistical methods, and then filtered by a similarity profiling approach that used for candidate gene prioritization. In our study, we firstly verified the molecular functions of the DEGs identified by the combined strategy with the gene expression data generated in the microarray experiments of Si-Wu-Tang, which is a popular formula in traditional Chinese medicine. The results showed that, for Si-Wu-Tang experimental data set, the cancer-related signaling pathways were significantly enriched by gene set enrichment analysis when using the DEG lists generated by the combined strategy, confirming the potentially cancer-preventive effect of Si-Wu-Tang. To verify the performance of the predictive models in clinical application, we used the combined strategy to select the DEGs as features from the gene expression data of the clinical samples, which were collected from the breast cancer patients, and constructed models to predict the chemotherapeutic sensitivity of tumors in breast cancer. After refining the DEG lists by a similarity profiling approach, the Matthew's correlation coefficients of predicting estrogen receptor status and the pathologic response to preoperative chemotherapy with the DEGs selected by the fold change ranking were 0.770 and 0.428, respectively, and were 0.748 and 0.373 with the DEGs selected by SAM, respectively, which were generally higher than those achieved with unrefined DEG lists and those achieved by the candidate models in the second phase of Microarray Quality Control project (0.732 and 0.301, respectively). Our results demonstrated that the strategy of integrating the statistical methods with the gene prioritization methods based on similarity profiling was a powerful tool for DEG selection, which effectively improved the performance of prediction models in clinical applications and can guide the personalized chemotherapy better." @default.
- W2036694619 created "2016-06-24" @default.
- W2036694619 creator A5007166385 @default.
- W2036694619 creator A5045703368 @default.
- W2036694619 creator A5049396785 @default.
- W2036694619 creator A5050836872 @default.
- W2036694619 creator A5051080943 @default.
- W2036694619 creator A5065545480 @default.
- W2036694619 creator A5067583977 @default.
- W2036694619 date "2014-04-01" @default.
- W2036694619 modified "2023-09-30" @default.
- W2036694619 title "Improving the prediction of chemotherapeutic sensitivity of tumors in breast cancer via optimizing the selection of candidate genes" @default.
- W2036694619 cites W1262485082 @default.
- W2036694619 cites W1803138666 @default.
- W2036694619 cites W1955382134 @default.
- W2036694619 cites W1971864849 @default.
- W2036694619 cites W1972329815 @default.
- W2036694619 cites W1978286722 @default.
- W2036694619 cites W1985030281 @default.
- W2036694619 cites W2004280628 @default.
- W2036694619 cites W2010637767 @default.
- W2036694619 cites W2021560851 @default.
- W2036694619 cites W2032755318 @default.
- W2036694619 cites W2054108659 @default.
- W2036694619 cites W2057957210 @default.
- W2036694619 cites W2065463641 @default.
- W2036694619 cites W2080089725 @default.
- W2036694619 cites W2090247362 @default.
- W2036694619 cites W2091309870 @default.
- W2036694619 cites W2096022647 @default.
- W2036694619 cites W2097255042 @default.
- W2036694619 cites W2104074461 @default.
- W2036694619 cites W2106477781 @default.
- W2036694619 cites W2109276980 @default.
- W2036694619 cites W2109555487 @default.
- W2036694619 cites W2109853461 @default.
- W2036694619 cites W2118413367 @default.
- W2036694619 cites W2121518671 @default.
- W2036694619 cites W2122673439 @default.
- W2036694619 cites W2123106337 @default.
- W2036694619 cites W2123434562 @default.
- W2036694619 cites W2124649657 @default.
- W2036694619 cites W2127657192 @default.
- W2036694619 cites W2128985829 @default.
- W2036694619 cites W2129859749 @default.
- W2036694619 cites W2130410032 @default.
- W2036694619 cites W2133764807 @default.
- W2036694619 cites W2137028370 @default.
- W2036694619 cites W2139510434 @default.
- W2036694619 cites W2142968125 @default.
- W2036694619 cites W2146280240 @default.
- W2036694619 cites W2148603752 @default.
- W2036694619 cites W2148763013 @default.
- W2036694619 cites W2153635508 @default.
- W2036694619 cites W2154899482 @default.
- W2036694619 cites W2156909104 @default.
- W2036694619 cites W2157795344 @default.
- W2036694619 cites W2160377567 @default.
- W2036694619 cites W2162713066 @default.
- W2036694619 cites W2165734811 @default.
- W2036694619 cites W2597616474 @default.
- W2036694619 doi "https://doi.org/10.1016/j.compbiolchem.2013.12.002" @default.
- W2036694619 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24440656" @default.
- W2036694619 hasPublicationYear "2014" @default.
- W2036694619 type Work @default.
- W2036694619 sameAs 2036694619 @default.
- W2036694619 citedByCount "7" @default.
- W2036694619 countsByYear W20366946192014 @default.
- W2036694619 countsByYear W20366946192015 @default.
- W2036694619 countsByYear W20366946192017 @default.
- W2036694619 countsByYear W20366946192018 @default.
- W2036694619 countsByYear W20366946192020 @default.
- W2036694619 crossrefType "journal-article" @default.
- W2036694619 hasAuthorship W2036694619A5007166385 @default.
- W2036694619 hasAuthorship W2036694619A5045703368 @default.
- W2036694619 hasAuthorship W2036694619A5049396785 @default.
- W2036694619 hasAuthorship W2036694619A5050836872 @default.
- W2036694619 hasAuthorship W2036694619A5051080943 @default.
- W2036694619 hasAuthorship W2036694619A5065545480 @default.
- W2036694619 hasAuthorship W2036694619A5067583977 @default.
- W2036694619 hasConcept C104317684 @default.
- W2036694619 hasConcept C119857082 @default.
- W2036694619 hasConcept C121608353 @default.
- W2036694619 hasConcept C143998085 @default.
- W2036694619 hasConcept C150194340 @default.
- W2036694619 hasConcept C162324750 @default.
- W2036694619 hasConcept C18431079 @default.
- W2036694619 hasConcept C186836561 @default.
- W2036694619 hasConcept C2777615720 @default.
- W2036694619 hasConcept C41008148 @default.
- W2036694619 hasConcept C530470458 @default.
- W2036694619 hasConcept C539667460 @default.
- W2036694619 hasConcept C54355233 @default.
- W2036694619 hasConcept C60644358 @default.
- W2036694619 hasConcept C69991583 @default.
- W2036694619 hasConcept C70721500 @default.
- W2036694619 hasConcept C71924100 @default.
- W2036694619 hasConcept C81917197 @default.
- W2036694619 hasConcept C8415881 @default.
- W2036694619 hasConcept C84606932 @default.