Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036712420> ?p ?o ?g. }
- W2036712420 endingPage "51" @default.
- W2036712420 startingPage "34" @default.
- W2036712420 abstract "The steady, buoyancy-driven rise of a bubble in a Herschel–Bulkley fluid is examined assuming axial symmetry. The variation of the rate-of-strain tensor around a rising bubble necessitates the coexistence of fluid and solid regions in this fluid. In general, a viscoplastic fluid will not be deforming beyond a finite region around the bubble and, under certain conditions, it will not be deforming either just behind it or around its equatorial plane. The accurate determination of these regions is achieved by introducing a Lagrange multiplier and a quadratic term in the corresponding variational inequality, resulting in the so-called Augmented Lagrangian Method (ALM). Additionally here, the augmentation parameters are determined following a non-linear conjugate gradient procedure. The new predictions are compared against those obtained by the much simpler Papanastasiou model, which uses a continuous constitutive equation throughout the material, irrespective of its state, but does not determine the boundary between solid and liquid along with the flow field. The flow equations are solved numerically using the mixed finite-element/Galerkin method on a mesh generated by solving a set of quasi-elliptic differential equations. The accuracy of solutions is ascertained by mesh refinement and comparison with our earlier and new predictions for a bubble rising in a Newtonian and a Bingham fluid. We determine the bubble shape and velocity and the shape of the yield surfaces for a wide range of material properties, expressed in terms of the Bingham, Bn, Bond, and Archimedes numbers. As Bn increases, the bubble decelerates, the yield surfaces at its equatorial plane and away from it approach each other and eventually merge immobilizing the bubble. For small and moderate Bingham numbers, the predictions using the Papanastasiou model satisfactorily approximate those of the discontinuous Herschel–Bulkley model for sufficiently large values of the normalization exponent (⩾104). On the contrary, as Bn increases and the rate-of-strain approaches zero almost throughout the fluid-like region, much larger values of the exponent are required to accurately compute the yield surfaces. Bubble entrapment does not depend on the power law index, i.e. a bubble in a Herschel–Bulkley fluid is entrapped under the same conditions as in a Bingham fluid." @default.
- W2036712420 created "2016-06-24" @default.
- W2036712420 creator A5009403229 @default.
- W2036712420 creator A5054871629 @default.
- W2036712420 creator A5067526505 @default.
- W2036712420 date "2013-10-01" @default.
- W2036712420 modified "2023-10-12" @default.
- W2036712420 title "Steady bubble rise in Herschel–Bulkley fluids and comparison of predictions via the Augmented Lagrangian Method with those via the Papanastasiou model" @default.
- W2036712420 cites W122213928 @default.
- W2036712420 cites W1969258087 @default.
- W2036712420 cites W1980520585 @default.
- W2036712420 cites W1982525761 @default.
- W2036712420 cites W1986111552 @default.
- W2036712420 cites W1986571010 @default.
- W2036712420 cites W1994847399 @default.
- W2036712420 cites W1998843008 @default.
- W2036712420 cites W2003105834 @default.
- W2036712420 cites W2014442722 @default.
- W2036712420 cites W2027204634 @default.
- W2036712420 cites W2035051363 @default.
- W2036712420 cites W2038967695 @default.
- W2036712420 cites W2047310022 @default.
- W2036712420 cites W2047375108 @default.
- W2036712420 cites W2047800515 @default.
- W2036712420 cites W2056203102 @default.
- W2036712420 cites W2061888754 @default.
- W2036712420 cites W2064390559 @default.
- W2036712420 cites W2068517632 @default.
- W2036712420 cites W2074326123 @default.
- W2036712420 cites W2075916499 @default.
- W2036712420 cites W2079994209 @default.
- W2036712420 cites W2085693915 @default.
- W2036712420 cites W2089588522 @default.
- W2036712420 cites W2090452914 @default.
- W2036712420 cites W2093480451 @default.
- W2036712420 cites W2103198775 @default.
- W2036712420 cites W2103714818 @default.
- W2036712420 cites W2107087294 @default.
- W2036712420 cites W2108106711 @default.
- W2036712420 cites W2137413718 @default.
- W2036712420 cites W2142998845 @default.
- W2036712420 cites W2152461785 @default.
- W2036712420 cites W2170919391 @default.
- W2036712420 cites W2334263534 @default.
- W2036712420 cites W2547713674 @default.
- W2036712420 cites W3098524023 @default.
- W2036712420 doi "https://doi.org/10.1016/j.jnnfm.2012.10.012" @default.
- W2036712420 hasPublicationYear "2013" @default.
- W2036712420 type Work @default.
- W2036712420 sameAs 2036712420 @default.
- W2036712420 citedByCount "102" @default.
- W2036712420 countsByYear W20367124202014 @default.
- W2036712420 countsByYear W20367124202015 @default.
- W2036712420 countsByYear W20367124202016 @default.
- W2036712420 countsByYear W20367124202017 @default.
- W2036712420 countsByYear W20367124202018 @default.
- W2036712420 countsByYear W20367124202019 @default.
- W2036712420 countsByYear W20367124202020 @default.
- W2036712420 countsByYear W20367124202021 @default.
- W2036712420 countsByYear W20367124202022 @default.
- W2036712420 countsByYear W20367124202023 @default.
- W2036712420 crossrefType "journal-article" @default.
- W2036712420 hasAuthorship W2036712420A5009403229 @default.
- W2036712420 hasAuthorship W2036712420A5054871629 @default.
- W2036712420 hasAuthorship W2036712420A5067526505 @default.
- W2036712420 hasConcept C121332964 @default.
- W2036712420 hasConcept C134306372 @default.
- W2036712420 hasConcept C134654583 @default.
- W2036712420 hasConcept C135628077 @default.
- W2036712420 hasConcept C157915830 @default.
- W2036712420 hasConcept C191236761 @default.
- W2036712420 hasConcept C200990466 @default.
- W2036712420 hasConcept C202973686 @default.
- W2036712420 hasConcept C294558 @default.
- W2036712420 hasConcept C33923547 @default.
- W2036712420 hasConcept C538625479 @default.
- W2036712420 hasConcept C55359492 @default.
- W2036712420 hasConcept C57879066 @default.
- W2036712420 hasConcept C74650414 @default.
- W2036712420 hasConcept C84403224 @default.
- W2036712420 hasConcept C97355855 @default.
- W2036712420 hasConceptScore W2036712420C121332964 @default.
- W2036712420 hasConceptScore W2036712420C134306372 @default.
- W2036712420 hasConceptScore W2036712420C134654583 @default.
- W2036712420 hasConceptScore W2036712420C135628077 @default.
- W2036712420 hasConceptScore W2036712420C157915830 @default.
- W2036712420 hasConceptScore W2036712420C191236761 @default.
- W2036712420 hasConceptScore W2036712420C200990466 @default.
- W2036712420 hasConceptScore W2036712420C202973686 @default.
- W2036712420 hasConceptScore W2036712420C294558 @default.
- W2036712420 hasConceptScore W2036712420C33923547 @default.
- W2036712420 hasConceptScore W2036712420C538625479 @default.
- W2036712420 hasConceptScore W2036712420C55359492 @default.
- W2036712420 hasConceptScore W2036712420C57879066 @default.
- W2036712420 hasConceptScore W2036712420C74650414 @default.
- W2036712420 hasConceptScore W2036712420C84403224 @default.
- W2036712420 hasConceptScore W2036712420C97355855 @default.
- W2036712420 hasLocation W20367124201 @default.