Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036715313> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2036715313 endingPage "173" @default.
- W2036715313 startingPage "166" @default.
- W2036715313 abstract "Letr⩾3 be an integer. A weak (r, Δ)-system is a family ofrsets such that all pairwise intersections among the members have the same cardinality. We show that fornlarge enough, there exists a family F of subsets of [n] such that F does not contain a weak (r, Δ)-system and |F|⩾2(1/3)·n1/5 log4/5(r−1). This improves an earlier result of Erdős and Szemerédi (1978,J. Combin. Theory Ser. A24, 308–313; cf. Erdős, On some of my favorite theorems, in “Combinatorics, Paul Erdős Is Eighty,” Vol. 2, Bolyai Society Math. Studies, pp. 97–133, János Bolyai Math. Soc., Budapest, 1990)." @default.
- W2036715313 created "2016-06-24" @default.
- W2036715313 creator A5010599965 @default.
- W2036715313 creator A5045701796 @default.
- W2036715313 date "1997-10-01" @default.
- W2036715313 modified "2023-10-17" @default.
- W2036715313 title "On the Size of Set Systems on [n] Not Containing Weak (r,Δ)-Systems" @default.
- W2036715313 cites W2013188591 @default.
- W2036715313 cites W2016341899 @default.
- W2036715313 cites W2019935404 @default.
- W2036715313 cites W2038951761 @default.
- W2036715313 cites W2168939576 @default.
- W2036715313 cites W4239534271 @default.
- W2036715313 doi "https://doi.org/10.1006/jcta.1997.2795" @default.
- W2036715313 hasPublicationYear "1997" @default.
- W2036715313 type Work @default.
- W2036715313 sameAs 2036715313 @default.
- W2036715313 citedByCount "5" @default.
- W2036715313 countsByYear W20367153132023 @default.
- W2036715313 crossrefType "journal-article" @default.
- W2036715313 hasAuthorship W2036715313A5010599965 @default.
- W2036715313 hasAuthorship W2036715313A5045701796 @default.
- W2036715313 hasBestOaLocation W20367153131 @default.
- W2036715313 hasConcept C105795698 @default.
- W2036715313 hasConcept C114614502 @default.
- W2036715313 hasConcept C118615104 @default.
- W2036715313 hasConcept C124101348 @default.
- W2036715313 hasConcept C177264268 @default.
- W2036715313 hasConcept C184898388 @default.
- W2036715313 hasConcept C199360897 @default.
- W2036715313 hasConcept C33923547 @default.
- W2036715313 hasConcept C41008148 @default.
- W2036715313 hasConcept C87117476 @default.
- W2036715313 hasConcept C97137487 @default.
- W2036715313 hasConceptScore W2036715313C105795698 @default.
- W2036715313 hasConceptScore W2036715313C114614502 @default.
- W2036715313 hasConceptScore W2036715313C118615104 @default.
- W2036715313 hasConceptScore W2036715313C124101348 @default.
- W2036715313 hasConceptScore W2036715313C177264268 @default.
- W2036715313 hasConceptScore W2036715313C184898388 @default.
- W2036715313 hasConceptScore W2036715313C199360897 @default.
- W2036715313 hasConceptScore W2036715313C33923547 @default.
- W2036715313 hasConceptScore W2036715313C41008148 @default.
- W2036715313 hasConceptScore W2036715313C87117476 @default.
- W2036715313 hasConceptScore W2036715313C97137487 @default.
- W2036715313 hasIssue "1" @default.
- W2036715313 hasLocation W20367153131 @default.
- W2036715313 hasOpenAccess W2036715313 @default.
- W2036715313 hasPrimaryLocation W20367153131 @default.
- W2036715313 hasRelatedWork W2024680387 @default.
- W2036715313 hasRelatedWork W2080188430 @default.
- W2036715313 hasRelatedWork W2132038253 @default.
- W2036715313 hasRelatedWork W2151029224 @default.
- W2036715313 hasRelatedWork W2151692582 @default.
- W2036715313 hasRelatedWork W2502624504 @default.
- W2036715313 hasRelatedWork W2739153529 @default.
- W2036715313 hasRelatedWork W2793745936 @default.
- W2036715313 hasRelatedWork W2951823902 @default.
- W2036715313 hasRelatedWork W4302398646 @default.
- W2036715313 hasVolume "80" @default.
- W2036715313 isParatext "false" @default.
- W2036715313 isRetracted "false" @default.
- W2036715313 magId "2036715313" @default.
- W2036715313 workType "article" @default.