Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036817851> ?p ?o ?g. }
- W2036817851 endingPage "3446" @default.
- W2036817851 startingPage "3432" @default.
- W2036817851 abstract "Ultrafast relaxation dynamics of the excited singlet (S1) state of Michler's ketone (MK) has been investigated in different kinds of solvents using a time-resolved absorption spectroscopic technique with 120 fs time resolution. This technique reveals that conversion of the locally excited (LE) state to the twisted intramolecular charge transfer (TICT) state because of twisting of the N,N-dimethylanilino groups with respect to the central carbonyl group is the major relaxation process responsible for the multi-exponential and probe-wavelength-dependent transient absorption dynamics of the S1 state of MK, but solvation dynamics does not have a significant role in this process. Theoretical optimization of the ground-state geometry of MK shows that the dimethylanilino groups attached to the central carbonyl group are at a dihedral angle of about 51° with respect to each other because of steric interaction between the phenyl rings. Following photoexcitation of MK to its S1 state, two kinds of twisting motions have been resolved. Immediately after photoexcitation, an ultrafast “anti-twisting” motion of the dimethylanilino groups brings back the pretwisted molecule to a near-planar geometry with high mesomeric interaction and intramolecular charge transfer (ICT) character. This motion is observed in all kinds of solvents. Additionally, in solvents of large polarity, the dimethylamino groups undergo further twisting to about 90° with respect to the phenyl ring, to which it is attached, leading to the conversion of the ICT state to the TICT state. Similar characteristics of the absorption spectra of the TICT state and the anion radical of MK establish the nearly pure electron transfer (ET) character of the TICT state. In aprotic solvents, because of the steep slope of the potential energy surface near the Franck−Condon (FC) or LE state region, the LE state is nearly nonemissive at room temperature and fluorescence emission is observed from only the ICT and TICT states. Alternatively, in protic solvents, because of an intermolecular hydrogen-bonding interaction between MK and the solvent, the LE region is more flat and stimulated emission from this state is also observed. However, a stronger hydrogen-bonding interaction between the TICT state and the solvent as well as the closeness between the two potential energy surfaces due to the TICT and the ground states cause the nonradiative coupling between these states to be very effective and, hence, cause the TICT state to be weakly emissive. The multi-exponentiality and strong wavelength-dependence of the kinetics of the relaxation process taking place in the S1 state of MK have arisen for several reasons, such as strong overlapping of transient absorption and stimulated emission spectra of the LE, ICT, and TICT states, which are formed consecutively following photoexcitation of the molecule, as well as the fact that different probe wavelengths monitor different regions of the potential energy surface representing the twisting motion of the excited molecule." @default.
- W2036817851 created "2016-06-24" @default.
- W2036817851 creator A5016349284 @default.
- W2036817851 creator A5062762737 @default.
- W2036817851 creator A5080359797 @default.
- W2036817851 creator A5083296099 @default.
- W2036817851 creator A5083702463 @default.
- W2036817851 date "2006-02-11" @default.
- W2036817851 modified "2023-09-26" @default.
- W2036817851 title "Twisting Dynamics in the Excited Singlet State of Michler's Ketone" @default.
- W2036817851 cites W1040606245 @default.
- W2036817851 cites W110574581 @default.
- W2036817851 cites W133052044 @default.
- W2036817851 cites W1963554925 @default.
- W2036817851 cites W1966347907 @default.
- W2036817851 cites W1967130657 @default.
- W2036817851 cites W1968760701 @default.
- W2036817851 cites W1973747581 @default.
- W2036817851 cites W1981265206 @default.
- W2036817851 cites W1981938157 @default.
- W2036817851 cites W1983673910 @default.
- W2036817851 cites W1985587620 @default.
- W2036817851 cites W1987047380 @default.
- W2036817851 cites W1988039672 @default.
- W2036817851 cites W1990344788 @default.
- W2036817851 cites W1991416932 @default.
- W2036817851 cites W1999355093 @default.
- W2036817851 cites W2001389418 @default.
- W2036817851 cites W2006947798 @default.
- W2036817851 cites W2007310641 @default.
- W2036817851 cites W2009584214 @default.
- W2036817851 cites W2010258721 @default.
- W2036817851 cites W2022950330 @default.
- W2036817851 cites W2025343077 @default.
- W2036817851 cites W2028196339 @default.
- W2036817851 cites W2032098020 @default.
- W2036817851 cites W2033405767 @default.
- W2036817851 cites W2034360330 @default.
- W2036817851 cites W2034597027 @default.
- W2036817851 cites W2036961493 @default.
- W2036817851 cites W2038854057 @default.
- W2036817851 cites W2047016847 @default.
- W2036817851 cites W2048925599 @default.
- W2036817851 cites W2048947145 @default.
- W2036817851 cites W2050389654 @default.
- W2036817851 cites W2051684734 @default.
- W2036817851 cites W2054007147 @default.
- W2036817851 cites W2054947925 @default.
- W2036817851 cites W2055543515 @default.
- W2036817851 cites W2059203547 @default.
- W2036817851 cites W2062137068 @default.
- W2036817851 cites W2070177215 @default.
- W2036817851 cites W2072146606 @default.
- W2036817851 cites W2076652105 @default.
- W2036817851 cites W2092830376 @default.
- W2036817851 cites W2093721323 @default.
- W2036817851 cites W2095474104 @default.
- W2036817851 cites W2118875433 @default.
- W2036817851 cites W2125156733 @default.
- W2036817851 cites W2142847865 @default.
- W2036817851 cites W2148082423 @default.
- W2036817851 cites W2166800727 @default.
- W2036817851 cites W2168036745 @default.
- W2036817851 cites W2949971572 @default.
- W2036817851 cites W2950713969 @default.
- W2036817851 cites W2950732046 @default.
- W2036817851 cites W4233721830 @default.
- W2036817851 doi "https://doi.org/10.1021/jp0555450" @default.
- W2036817851 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16526622" @default.
- W2036817851 hasPublicationYear "2006" @default.
- W2036817851 type Work @default.
- W2036817851 sameAs 2036817851 @default.
- W2036817851 citedByCount "39" @default.
- W2036817851 countsByYear W20368178512012 @default.
- W2036817851 countsByYear W20368178512013 @default.
- W2036817851 countsByYear W20368178512014 @default.
- W2036817851 countsByYear W20368178512015 @default.
- W2036817851 countsByYear W20368178512016 @default.
- W2036817851 countsByYear W20368178512017 @default.
- W2036817851 countsByYear W20368178512018 @default.
- W2036817851 countsByYear W20368178512019 @default.
- W2036817851 countsByYear W20368178512020 @default.
- W2036817851 countsByYear W20368178512021 @default.
- W2036817851 countsByYear W20368178512022 @default.
- W2036817851 countsByYear W20368178512023 @default.
- W2036817851 crossrefType "journal-article" @default.
- W2036817851 hasAuthorship W2036817851A5016349284 @default.
- W2036817851 hasAuthorship W2036817851A5062762737 @default.
- W2036817851 hasAuthorship W2036817851A5080359797 @default.
- W2036817851 hasAuthorship W2036817851A5083296099 @default.
- W2036817851 hasAuthorship W2036817851A5083702463 @default.
- W2036817851 hasConcept C112887158 @default.
- W2036817851 hasConcept C121332964 @default.
- W2036817851 hasConcept C148093993 @default.
- W2036817851 hasConcept C155220765 @default.
- W2036817851 hasConcept C15744967 @default.
- W2036817851 hasConcept C178790620 @default.
- W2036817851 hasConcept C181500209 @default.