Matches in SemOpenAlex for { <https://semopenalex.org/work/W2036969206> ?p ?o ?g. }
- W2036969206 endingPage "4724" @default.
- W2036969206 startingPage "4717" @default.
- W2036969206 abstract "Noisy time series prediction is attractive and challenging since it is essential in many fields, such as forecasting, modeling, signal processing, economic and business planning. Radial basis function (RBF) neural network is considered as a good candidate for the prediction problems due to its rapid learning capacity and, therefore, has been applied successfully to nonlinear time series modeling and forecasts. However, the traditional RBF network encounters two primary problems. The first one is that the network performance is very likely to be affected by noise. The second problem is about the determination of the number of hidden nodes. In this paper, we present an M-estimator based robust radial basis function (RBF) learning algorithm with growing and pruning techniques. The Welsch M-estimator and median scale estimator are employed to get rid of the influence from the noise. The concept of neuron significance is adopted to implement the growing and pruning techniques of network nodes. The proposed method not only eliminates the influence of noise, but also dynamically adjusts the number of neurons to approach an appropriate size of the network. The results from the experiments show that the proposed method can produce a minimum prediction error compared with other methods. Furthermore, even adding 30% additive noise of the magnitude of the data, this proposed method still can do a good performance." @default.
- W2036969206 created "2016-06-24" @default.
- W2036969206 creator A5017273601 @default.
- W2036969206 creator A5026760779 @default.
- W2036969206 creator A5054004146 @default.
- W2036969206 creator A5067391856 @default.
- W2036969206 date "2009-04-01" @default.
- W2036969206 modified "2023-09-27" @default.
- W2036969206 title "Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques" @default.
- W2036969206 cites W1593220678 @default.
- W2036969206 cites W1979091268 @default.
- W2036969206 cites W1980418485 @default.
- W2036969206 cites W2040010495 @default.
- W2036969206 cites W2078094465 @default.
- W2036969206 cites W2090696802 @default.
- W2036969206 cites W2119739937 @default.
- W2036969206 cites W2121129397 @default.
- W2036969206 cites W2129652189 @default.
- W2036969206 cites W2131246644 @default.
- W2036969206 cites W2142402197 @default.
- W2036969206 cites W2147115745 @default.
- W2036969206 cites W2152907901 @default.
- W2036969206 cites W2153845355 @default.
- W2036969206 cites W2155399784 @default.
- W2036969206 cites W2156019969 @default.
- W2036969206 cites W2161913203 @default.
- W2036969206 cites W2171194336 @default.
- W2036969206 doi "https://doi.org/10.1016/j.eswa.2008.06.017" @default.
- W2036969206 hasPublicationYear "2009" @default.
- W2036969206 type Work @default.
- W2036969206 sameAs 2036969206 @default.
- W2036969206 citedByCount "49" @default.
- W2036969206 countsByYear W20369692062012 @default.
- W2036969206 countsByYear W20369692062013 @default.
- W2036969206 countsByYear W20369692062014 @default.
- W2036969206 countsByYear W20369692062015 @default.
- W2036969206 countsByYear W20369692062016 @default.
- W2036969206 countsByYear W20369692062017 @default.
- W2036969206 countsByYear W20369692062018 @default.
- W2036969206 countsByYear W20369692062020 @default.
- W2036969206 countsByYear W20369692062021 @default.
- W2036969206 countsByYear W20369692062022 @default.
- W2036969206 countsByYear W20369692062023 @default.
- W2036969206 crossrefType "journal-article" @default.
- W2036969206 hasAuthorship W2036969206A5017273601 @default.
- W2036969206 hasAuthorship W2036969206A5026760779 @default.
- W2036969206 hasAuthorship W2036969206A5054004146 @default.
- W2036969206 hasAuthorship W2036969206A5067391856 @default.
- W2036969206 hasConcept C105795698 @default.
- W2036969206 hasConcept C108010975 @default.
- W2036969206 hasConcept C11413529 @default.
- W2036969206 hasConcept C115961682 @default.
- W2036969206 hasConcept C119857082 @default.
- W2036969206 hasConcept C121332964 @default.
- W2036969206 hasConcept C12426560 @default.
- W2036969206 hasConcept C132917294 @default.
- W2036969206 hasConcept C14036430 @default.
- W2036969206 hasConcept C143724316 @default.
- W2036969206 hasConcept C151406439 @default.
- W2036969206 hasConcept C151730666 @default.
- W2036969206 hasConcept C154945302 @default.
- W2036969206 hasConcept C158622935 @default.
- W2036969206 hasConcept C185429906 @default.
- W2036969206 hasConcept C2524010 @default.
- W2036969206 hasConcept C33923547 @default.
- W2036969206 hasConcept C41008148 @default.
- W2036969206 hasConcept C50644808 @default.
- W2036969206 hasConcept C62520636 @default.
- W2036969206 hasConcept C6557445 @default.
- W2036969206 hasConcept C78458016 @default.
- W2036969206 hasConcept C86803240 @default.
- W2036969206 hasConcept C98856871 @default.
- W2036969206 hasConcept C99498987 @default.
- W2036969206 hasConceptScore W2036969206C105795698 @default.
- W2036969206 hasConceptScore W2036969206C108010975 @default.
- W2036969206 hasConceptScore W2036969206C11413529 @default.
- W2036969206 hasConceptScore W2036969206C115961682 @default.
- W2036969206 hasConceptScore W2036969206C119857082 @default.
- W2036969206 hasConceptScore W2036969206C121332964 @default.
- W2036969206 hasConceptScore W2036969206C12426560 @default.
- W2036969206 hasConceptScore W2036969206C132917294 @default.
- W2036969206 hasConceptScore W2036969206C14036430 @default.
- W2036969206 hasConceptScore W2036969206C143724316 @default.
- W2036969206 hasConceptScore W2036969206C151406439 @default.
- W2036969206 hasConceptScore W2036969206C151730666 @default.
- W2036969206 hasConceptScore W2036969206C154945302 @default.
- W2036969206 hasConceptScore W2036969206C158622935 @default.
- W2036969206 hasConceptScore W2036969206C185429906 @default.
- W2036969206 hasConceptScore W2036969206C2524010 @default.
- W2036969206 hasConceptScore W2036969206C33923547 @default.
- W2036969206 hasConceptScore W2036969206C41008148 @default.
- W2036969206 hasConceptScore W2036969206C50644808 @default.
- W2036969206 hasConceptScore W2036969206C62520636 @default.
- W2036969206 hasConceptScore W2036969206C6557445 @default.
- W2036969206 hasConceptScore W2036969206C78458016 @default.
- W2036969206 hasConceptScore W2036969206C86803240 @default.
- W2036969206 hasConceptScore W2036969206C98856871 @default.
- W2036969206 hasConceptScore W2036969206C99498987 @default.