Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037112354> ?p ?o ?g. }
- W2037112354 endingPage "5566" @default.
- W2037112354 startingPage "5554" @default.
- W2037112354 abstract "Developing an automatic system for recognizing video texts such as signboards, street names, room numbers, building names and hotels names is challenging due to low resolution, complex background, font or font size variations, and multiple orientations of texts. In this paper, we develop a new system to recognize video texts through binarization by introducing a Bayesian classifier. We explore wavelet decomposition and gradient sub-bands to enhance text information in video. The enhanced information is used in different ways to calculate the requirement of Bayesian classifier, such as a priori probability and conditional probabilities of text pixels to estimate the posterior probability automatically, which results in text components. Connected component analysis is then applied to restore missing text information before sending it to an OCR engine if any disconnection exists in the text components. Experimental results on video data, the benchmark ICDAR scene character data (camera images) and arbitrary orientation data (camera images) show that the proposed method outperforms existing baseline methods in terms of recognition rates at both character and pixel levels." @default.
- W2037112354 created "2016-06-24" @default.
- W2037112354 creator A5020917225 @default.
- W2037112354 creator A5025871978 @default.
- W2037112354 creator A5036208317 @default.
- W2037112354 creator A5047197403 @default.
- W2037112354 creator A5061696740 @default.
- W2037112354 creator A5068803496 @default.
- W2037112354 date "2015-08-01" @default.
- W2037112354 modified "2023-10-15" @default.
- W2037112354 title "Bayesian classifier for multi-oriented video text recognition system" @default.
- W2037112354 cites W1497790312 @default.
- W2037112354 cites W1521064364 @default.
- W2037112354 cites W1964797636 @default.
- W2037112354 cites W1970187071 @default.
- W2037112354 cites W1971822075 @default.
- W2037112354 cites W1974975708 @default.
- W2037112354 cites W1979152532 @default.
- W2037112354 cites W1985790332 @default.
- W2037112354 cites W2003285450 @default.
- W2037112354 cites W2005182288 @default.
- W2037112354 cites W2010747361 @default.
- W2037112354 cites W2014953014 @default.
- W2037112354 cites W2022859833 @default.
- W2037112354 cites W2027883219 @default.
- W2037112354 cites W2043687348 @default.
- W2037112354 cites W2072610689 @default.
- W2037112354 cites W2077896452 @default.
- W2037112354 cites W2084465724 @default.
- W2037112354 cites W2086838552 @default.
- W2037112354 cites W2099063119 @default.
- W2037112354 cites W2099306567 @default.
- W2037112354 cites W2114701495 @default.
- W2037112354 cites W2118011706 @default.
- W2037112354 cites W2123827229 @default.
- W2037112354 cites W2130475102 @default.
- W2037112354 cites W2131093082 @default.
- W2037112354 cites W2131447359 @default.
- W2037112354 cites W2133059825 @default.
- W2037112354 cites W2134378185 @default.
- W2037112354 cites W2135231474 @default.
- W2037112354 cites W2135431879 @default.
- W2037112354 cites W2137969867 @default.
- W2037112354 cites W2138326121 @default.
- W2037112354 cites W2140132917 @default.
- W2037112354 cites W2168445392 @default.
- W2037112354 cites W2169680646 @default.
- W2037112354 doi "https://doi.org/10.1016/j.eswa.2015.02.030" @default.
- W2037112354 hasPublicationYear "2015" @default.
- W2037112354 type Work @default.
- W2037112354 sameAs 2037112354 @default.
- W2037112354 citedByCount "37" @default.
- W2037112354 countsByYear W20371123542015 @default.
- W2037112354 countsByYear W20371123542016 @default.
- W2037112354 countsByYear W20371123542017 @default.
- W2037112354 countsByYear W20371123542018 @default.
- W2037112354 countsByYear W20371123542019 @default.
- W2037112354 countsByYear W20371123542020 @default.
- W2037112354 countsByYear W20371123542021 @default.
- W2037112354 countsByYear W20371123542022 @default.
- W2037112354 crossrefType "journal-article" @default.
- W2037112354 hasAuthorship W2037112354A5020917225 @default.
- W2037112354 hasAuthorship W2037112354A5025871978 @default.
- W2037112354 hasAuthorship W2037112354A5036208317 @default.
- W2037112354 hasAuthorship W2037112354A5047197403 @default.
- W2037112354 hasAuthorship W2037112354A5061696740 @default.
- W2037112354 hasAuthorship W2037112354A5068803496 @default.
- W2037112354 hasConcept C107673813 @default.
- W2037112354 hasConcept C115961682 @default.
- W2037112354 hasConcept C12267149 @default.
- W2037112354 hasConcept C13280743 @default.
- W2037112354 hasConcept C153180895 @default.
- W2037112354 hasConcept C154945302 @default.
- W2037112354 hasConcept C160633673 @default.
- W2037112354 hasConcept C185798385 @default.
- W2037112354 hasConcept C205649164 @default.
- W2037112354 hasConcept C2983589003 @default.
- W2037112354 hasConcept C31972630 @default.
- W2037112354 hasConcept C41008148 @default.
- W2037112354 hasConcept C52001869 @default.
- W2037112354 hasConcept C57830394 @default.
- W2037112354 hasConcept C95623464 @default.
- W2037112354 hasConceptScore W2037112354C107673813 @default.
- W2037112354 hasConceptScore W2037112354C115961682 @default.
- W2037112354 hasConceptScore W2037112354C12267149 @default.
- W2037112354 hasConceptScore W2037112354C13280743 @default.
- W2037112354 hasConceptScore W2037112354C153180895 @default.
- W2037112354 hasConceptScore W2037112354C154945302 @default.
- W2037112354 hasConceptScore W2037112354C160633673 @default.
- W2037112354 hasConceptScore W2037112354C185798385 @default.
- W2037112354 hasConceptScore W2037112354C205649164 @default.
- W2037112354 hasConceptScore W2037112354C2983589003 @default.
- W2037112354 hasConceptScore W2037112354C31972630 @default.
- W2037112354 hasConceptScore W2037112354C41008148 @default.
- W2037112354 hasConceptScore W2037112354C52001869 @default.
- W2037112354 hasConceptScore W2037112354C57830394 @default.
- W2037112354 hasConceptScore W2037112354C95623464 @default.
- W2037112354 hasFunder F4320321001 @default.