Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037112966> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2037112966 abstract "One commonly used engineering tool for condition assessment of power transformers is Dissolved Gas Analysis (DGA) which can detect internal and incipient faults and can be done without disrupting the operation of the transformer. The drawback of DGA is that the conventional methods that are used to interpret DGA test results have limitations. To address the limitations of the conventional methods, a combined Artificial Immune System (AIS) and Artificial Neural Network (ANN), called an Immune Neural Network, is used in this paper as an alternative approach for condition assessment of transformers. Radial Basis Function Neural Network (RBFNN) is used for nonlinear mapping of DGA data inputs to different transformer health conditions such as normal condition and faulty conditions involving internal arcing, localized overheating, partial discharge activity, or multiple faults. DGA data inputs include concentrations of five dissolved gases (hydrogen, methane, ethane, ethylene, and acetylene) in transformer oil, gas generation rate in ppm/day, and gas ratios. An immune system-inspired model known as the aiNet model is used to determine the centers of the RBFNN. The aiNet is compared to random selection and k-means clustering in determining the RBFNN hidden centers. It is proven in the study that the aiNet has better training convergence and has an advantage over k-means due to non-empty clusters results. The study also showed that unlike conventional methods, the Immune Neural Network approach always gives a definite diagnosis, and it has better diagnosis accuracy for normal, single-fault, and multiple-fault transformer conditions." @default.
- W2037112966 created "2016-06-24" @default.
- W2037112966 creator A5058935103 @default.
- W2037112966 creator A5066340924 @default.
- W2037112966 date "2014-10-01" @default.
- W2037112966 modified "2023-09-24" @default.
- W2037112966 title "Power transformer condition assessment using an immune neural network approach to Dissolved Gas Analysis" @default.
- W2037112966 cites W1984681681 @default.
- W2037112966 cites W2007513237 @default.
- W2037112966 cites W2109563074 @default.
- W2037112966 cites W2119602150 @default.
- W2037112966 cites W2126861833 @default.
- W2037112966 cites W2157122594 @default.
- W2037112966 cites W2798741797 @default.
- W2037112966 doi "https://doi.org/10.1109/tencon.2014.7022327" @default.
- W2037112966 hasPublicationYear "2014" @default.
- W2037112966 type Work @default.
- W2037112966 sameAs 2037112966 @default.
- W2037112966 citedByCount "10" @default.
- W2037112966 countsByYear W20371129662015 @default.
- W2037112966 countsByYear W20371129662016 @default.
- W2037112966 countsByYear W20371129662018 @default.
- W2037112966 countsByYear W20371129662019 @default.
- W2037112966 countsByYear W20371129662020 @default.
- W2037112966 countsByYear W20371129662021 @default.
- W2037112966 countsByYear W20371129662022 @default.
- W2037112966 crossrefType "proceedings-article" @default.
- W2037112966 hasAuthorship W2037112966A5058935103 @default.
- W2037112966 hasAuthorship W2037112966A5066340924 @default.
- W2037112966 hasConcept C119599485 @default.
- W2037112966 hasConcept C121332964 @default.
- W2037112966 hasConcept C127413603 @default.
- W2037112966 hasConcept C130143024 @default.
- W2037112966 hasConcept C154945302 @default.
- W2037112966 hasConcept C158622935 @default.
- W2037112966 hasConcept C163258240 @default.
- W2037112966 hasConcept C165801399 @default.
- W2037112966 hasConcept C181335627 @default.
- W2037112966 hasConcept C2775846686 @default.
- W2037112966 hasConcept C41008148 @default.
- W2037112966 hasConcept C50644808 @default.
- W2037112966 hasConcept C62520636 @default.
- W2037112966 hasConcept C66322947 @default.
- W2037112966 hasConcept C81818771 @default.
- W2037112966 hasConcept C89227174 @default.
- W2037112966 hasConcept C93768804 @default.
- W2037112966 hasConcept C98856871 @default.
- W2037112966 hasConceptScore W2037112966C119599485 @default.
- W2037112966 hasConceptScore W2037112966C121332964 @default.
- W2037112966 hasConceptScore W2037112966C127413603 @default.
- W2037112966 hasConceptScore W2037112966C130143024 @default.
- W2037112966 hasConceptScore W2037112966C154945302 @default.
- W2037112966 hasConceptScore W2037112966C158622935 @default.
- W2037112966 hasConceptScore W2037112966C163258240 @default.
- W2037112966 hasConceptScore W2037112966C165801399 @default.
- W2037112966 hasConceptScore W2037112966C181335627 @default.
- W2037112966 hasConceptScore W2037112966C2775846686 @default.
- W2037112966 hasConceptScore W2037112966C41008148 @default.
- W2037112966 hasConceptScore W2037112966C50644808 @default.
- W2037112966 hasConceptScore W2037112966C62520636 @default.
- W2037112966 hasConceptScore W2037112966C66322947 @default.
- W2037112966 hasConceptScore W2037112966C81818771 @default.
- W2037112966 hasConceptScore W2037112966C89227174 @default.
- W2037112966 hasConceptScore W2037112966C93768804 @default.
- W2037112966 hasConceptScore W2037112966C98856871 @default.
- W2037112966 hasLocation W20371129661 @default.
- W2037112966 hasOpenAccess W2037112966 @default.
- W2037112966 hasPrimaryLocation W20371129661 @default.
- W2037112966 hasRelatedWork W2037112966 @default.
- W2037112966 hasRelatedWork W2110215206 @default.
- W2037112966 hasRelatedWork W2122372740 @default.
- W2037112966 hasRelatedWork W2347548626 @default.
- W2037112966 hasRelatedWork W2349687391 @default.
- W2037112966 hasRelatedWork W2383735916 @default.
- W2037112966 hasRelatedWork W2384904525 @default.
- W2037112966 hasRelatedWork W2543975185 @default.
- W2037112966 hasRelatedWork W2903242051 @default.
- W2037112966 hasRelatedWork W3114124148 @default.
- W2037112966 isParatext "false" @default.
- W2037112966 isRetracted "false" @default.
- W2037112966 magId "2037112966" @default.
- W2037112966 workType "article" @default.