Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037119295> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2037119295 abstract "The notion of semidirect product of two transformation semigroups is introduced, and its space of almost periodic functions is expressed as a tensor product. The general techniques developed are applied to the special case of a semidirect product S © T of two semigroups. As a consequence new results are obtained on the characterization of the almost periodic compactification of S © Γ as a semidirect product of compact semigroups. A related result is the splitting of the enveloping semigroup of a semidirect product of certain flows into a semidirect product of enveloping semigroups. 0. Introduction. Let S and T be semitopological semigroups and S (?) Γ a semidirect product of S and T. In an earlier paper [10] we showed that, under certain conditions, the almost periodic (a.p.) compactification (S © T) r of S © T is a semidirect product of the a.p. compactification of T and a certain compact topological semigroup containing a dense homomorphic image of S. A simple corollary of this result is that the space of a.p. functions on S © T is a tensor product of the space of a.p. functions on T and a subspace of a.p. functions on S. In this paper we introduce the notion of semidirect product of transformation semigroups and determine exactly when its space of a.p. functions may be expressed as a tensor product in analogy with the semigroup case described above. Cast in this general setting the problem of characterizin g the space of a.p. functions on a semidirect product of semigroups becomes clear, and the techniques developed lead to elegant necessary and sufficient conditions for (S © TY to be a semidirect product. As a consequence we are able to show that (S © T)' is a semidirect product for all semitopological semigroups S with identity and all semitopological groups T, thus generalizing results of [10, 11, 12]. The same conclusion holds if T merely contains a dense subgroup. In a similar vein, but using different techniques, we show that in a wide variety of cases the enveloping semigroup of the semidirect product of two equicontinuous flows is (canonically isomorphic to) a semi- direct product of the original enveloping semigroups." @default.
- W2037119295 created "2016-06-24" @default.
- W2037119295 creator A5067205408 @default.
- W2037119295 date "1978-11-01" @default.
- W2037119295 modified "2023-10-18" @default.
- W2037119295 title "Almost periodic functions on semidirect products of transformation semigroups" @default.
- W2037119295 cites W1977711951 @default.
- W2037119295 cites W1984398297 @default.
- W2037119295 cites W1985354793 @default.
- W2037119295 cites W2018373044 @default.
- W2037119295 cites W2031721838 @default.
- W2037119295 cites W2071773280 @default.
- W2037119295 cites W2150247219 @default.
- W2037119295 cites W2319308948 @default.
- W2037119295 cites W2326198759 @default.
- W2037119295 cites W586687313 @default.
- W2037119295 cites W630961571 @default.
- W2037119295 doi "https://doi.org/10.2140/pjm.1978.79.117" @default.
- W2037119295 hasPublicationYear "1978" @default.
- W2037119295 type Work @default.
- W2037119295 sameAs 2037119295 @default.
- W2037119295 citedByCount "2" @default.
- W2037119295 crossrefType "journal-article" @default.
- W2037119295 hasAuthorship W2037119295A5067205408 @default.
- W2037119295 hasBestOaLocation W20371192951 @default.
- W2037119295 hasConcept C132170107 @default.
- W2037119295 hasConcept C136119220 @default.
- W2037119295 hasConcept C178790620 @default.
- W2037119295 hasConcept C185592680 @default.
- W2037119295 hasConcept C202444582 @default.
- W2037119295 hasConcept C207405024 @default.
- W2037119295 hasConcept C2524010 @default.
- W2037119295 hasConcept C2779165322 @default.
- W2037119295 hasConcept C2781311116 @default.
- W2037119295 hasConcept C33923547 @default.
- W2037119295 hasConcept C51255310 @default.
- W2037119295 hasConcept C75066664 @default.
- W2037119295 hasConcept C90673727 @default.
- W2037119295 hasConcept C95635736 @default.
- W2037119295 hasConceptScore W2037119295C132170107 @default.
- W2037119295 hasConceptScore W2037119295C136119220 @default.
- W2037119295 hasConceptScore W2037119295C178790620 @default.
- W2037119295 hasConceptScore W2037119295C185592680 @default.
- W2037119295 hasConceptScore W2037119295C202444582 @default.
- W2037119295 hasConceptScore W2037119295C207405024 @default.
- W2037119295 hasConceptScore W2037119295C2524010 @default.
- W2037119295 hasConceptScore W2037119295C2779165322 @default.
- W2037119295 hasConceptScore W2037119295C2781311116 @default.
- W2037119295 hasConceptScore W2037119295C33923547 @default.
- W2037119295 hasConceptScore W2037119295C51255310 @default.
- W2037119295 hasConceptScore W2037119295C75066664 @default.
- W2037119295 hasConceptScore W2037119295C90673727 @default.
- W2037119295 hasConceptScore W2037119295C95635736 @default.
- W2037119295 hasLocation W20371192951 @default.
- W2037119295 hasLocation W20371192952 @default.
- W2037119295 hasOpenAccess W2037119295 @default.
- W2037119295 hasPrimaryLocation W20371192951 @default.
- W2037119295 hasRelatedWork W1490440296 @default.
- W2037119295 hasRelatedWork W1642630146 @default.
- W2037119295 hasRelatedWork W1966038349 @default.
- W2037119295 hasRelatedWork W1983050276 @default.
- W2037119295 hasRelatedWork W1986807064 @default.
- W2037119295 hasRelatedWork W2001306853 @default.
- W2037119295 hasRelatedWork W2018090785 @default.
- W2037119295 hasRelatedWork W2049559069 @default.
- W2037119295 hasRelatedWork W2054854289 @default.
- W2037119295 hasRelatedWork W2080314582 @default.
- W2037119295 hasRelatedWork W2101657531 @default.
- W2037119295 hasRelatedWork W2144947771 @default.
- W2037119295 hasRelatedWork W2166123687 @default.
- W2037119295 hasRelatedWork W2170724243 @default.
- W2037119295 hasRelatedWork W2274001348 @default.
- W2037119295 hasRelatedWork W2351486779 @default.
- W2037119295 hasRelatedWork W2465742877 @default.
- W2037119295 hasRelatedWork W2810028393 @default.
- W2037119295 hasRelatedWork W2046362778 @default.
- W2037119295 hasRelatedWork W2342271506 @default.
- W2037119295 isParatext "false" @default.
- W2037119295 isRetracted "false" @default.
- W2037119295 magId "2037119295" @default.
- W2037119295 workType "article" @default.