Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037134354> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2037134354 endingPage "858" @default.
- W2037134354 startingPage "842" @default.
- W2037134354 abstract "The feature selection (also, specification) problem is concerned with finding the most influential subset of predictors in predictive modeling from a much larger set of potential predictors that can contain hundreds of predictors. The problem belongs to the realm of combinatorial optimization where the objective is to find the subset of variables that optimize the value of some goodness of fit function. Due to the dimensionality of the problem, the feature selection problem belongs to the group of NP-hard problems. Most of the available predictors are noisy or redundant and add very little, if any, to the prediction power of the model. Using all the predictors in the model often results in strong over-fitting and very poor predictions. Constructing a prediction model by checking out all possible subsets is impractical due to computational volume. Looking on the contribution of each predictor separately is not accurate because it ignores the inter-correlations between predictors. As a result, no analytic solution is available for the feature selection problem, requiring that one resorts to heuristics. In this paper we employ the simulated annealing (SA) approach, which is one of the leading stochastic search methods, for specifying a large-scale linear regression model. The SA results are compared to the results of the more common stepwise regression (SWR) approach for model specification. The models are applied on realistic data sets in database marketing. We also use simulated data sets to investigate what data characteristics make the SWR approach equivalent to the supposedly more superior SA approach." @default.
- W2037134354 created "2016-06-24" @default.
- W2037134354 creator A5070428016 @default.
- W2037134354 creator A5080552084 @default.
- W2037134354 date "2006-06-01" @default.
- W2037134354 modified "2023-09-28" @default.
- W2037134354 title "Using simulated annealing to optimize the feature selection problem in marketing applications" @default.
- W2037134354 cites W1539166981 @default.
- W2037134354 cites W1553244859 @default.
- W2037134354 cites W1619226191 @default.
- W2037134354 cites W1808644423 @default.
- W2037134354 cites W1968371014 @default.
- W2037134354 cites W196871588 @default.
- W2037134354 cites W1983995059 @default.
- W2037134354 cites W1986783130 @default.
- W2037134354 cites W1996087748 @default.
- W2037134354 cites W2013923357 @default.
- W2037134354 cites W2024060531 @default.
- W2037134354 cites W2037083183 @default.
- W2037134354 cites W2039537889 @default.
- W2037134354 cites W2040884411 @default.
- W2037134354 cites W2046689939 @default.
- W2037134354 cites W2056760934 @default.
- W2037134354 cites W2076118331 @default.
- W2037134354 cites W2084089095 @default.
- W2037134354 cites W2093502664 @default.
- W2037134354 cites W2130759652 @default.
- W2037134354 cites W2142635246 @default.
- W2037134354 cites W2148633389 @default.
- W2037134354 cites W2152037529 @default.
- W2037134354 cites W2168175751 @default.
- W2037134354 cites W4234107176 @default.
- W2037134354 cites W4237415315 @default.
- W2037134354 cites W4239353198 @default.
- W2037134354 cites W4246858143 @default.
- W2037134354 cites W4249247926 @default.
- W2037134354 cites W4255582690 @default.
- W2037134354 doi "https://doi.org/10.1016/j.ejor.2004.09.010" @default.
- W2037134354 hasPublicationYear "2006" @default.
- W2037134354 type Work @default.
- W2037134354 sameAs 2037134354 @default.
- W2037134354 citedByCount "157" @default.
- W2037134354 countsByYear W20371343542012 @default.
- W2037134354 countsByYear W20371343542013 @default.
- W2037134354 countsByYear W20371343542014 @default.
- W2037134354 countsByYear W20371343542015 @default.
- W2037134354 countsByYear W20371343542016 @default.
- W2037134354 countsByYear W20371343542017 @default.
- W2037134354 countsByYear W20371343542018 @default.
- W2037134354 countsByYear W20371343542019 @default.
- W2037134354 countsByYear W20371343542020 @default.
- W2037134354 countsByYear W20371343542021 @default.
- W2037134354 countsByYear W20371343542022 @default.
- W2037134354 countsByYear W20371343542023 @default.
- W2037134354 crossrefType "journal-article" @default.
- W2037134354 hasAuthorship W2037134354A5070428016 @default.
- W2037134354 hasAuthorship W2037134354A5080552084 @default.
- W2037134354 hasConcept C111030470 @default.
- W2037134354 hasConcept C119857082 @default.
- W2037134354 hasConcept C124101348 @default.
- W2037134354 hasConcept C126255220 @default.
- W2037134354 hasConcept C126980161 @default.
- W2037134354 hasConcept C127705205 @default.
- W2037134354 hasConcept C148483581 @default.
- W2037134354 hasConcept C154945302 @default.
- W2037134354 hasConcept C33923547 @default.
- W2037134354 hasConcept C41008148 @default.
- W2037134354 hasConcept C93959086 @default.
- W2037134354 hasConceptScore W2037134354C111030470 @default.
- W2037134354 hasConceptScore W2037134354C119857082 @default.
- W2037134354 hasConceptScore W2037134354C124101348 @default.
- W2037134354 hasConceptScore W2037134354C126255220 @default.
- W2037134354 hasConceptScore W2037134354C126980161 @default.
- W2037134354 hasConceptScore W2037134354C127705205 @default.
- W2037134354 hasConceptScore W2037134354C148483581 @default.
- W2037134354 hasConceptScore W2037134354C154945302 @default.
- W2037134354 hasConceptScore W2037134354C33923547 @default.
- W2037134354 hasConceptScore W2037134354C41008148 @default.
- W2037134354 hasConceptScore W2037134354C93959086 @default.
- W2037134354 hasIssue "3" @default.
- W2037134354 hasLocation W20371343541 @default.
- W2037134354 hasOpenAccess W2037134354 @default.
- W2037134354 hasPrimaryLocation W20371343541 @default.
- W2037134354 hasRelatedWork W167806033 @default.
- W2037134354 hasRelatedWork W1966441798 @default.
- W2037134354 hasRelatedWork W2094172533 @default.
- W2037134354 hasRelatedWork W2534812588 @default.
- W2037134354 hasRelatedWork W2922235759 @default.
- W2037134354 hasRelatedWork W3210877509 @default.
- W2037134354 hasRelatedWork W4212852473 @default.
- W2037134354 hasRelatedWork W4225360065 @default.
- W2037134354 hasRelatedWork W4281401694 @default.
- W2037134354 hasRelatedWork W4293525103 @default.
- W2037134354 hasVolume "171" @default.
- W2037134354 isParatext "false" @default.
- W2037134354 isRetracted "false" @default.
- W2037134354 magId "2037134354" @default.
- W2037134354 workType "article" @default.