Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037137778> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2037137778 endingPage "693" @default.
- W2037137778 startingPage "683" @default.
- W2037137778 abstract "Micro-electrodischarge machining (EDM) can produce microhole and other complex three-dimensional features on a wide range of conductive engineering materials such as titanium super alloy, inconel, etc. The micromachining of titanium super alloy (Ti—6Al—4V) is in very high demand because of its various applications in aerospace, automotive, biomedical, and electronics industries, owing to its good strength-to-weight ratio and excellent corrosion-resistant properties. The present research study deals with the response surface methodology (RSM) and artificial neural network (ANN) with back-propagation-algorithm-based mathematical modelling. Furthermore, optimization of the machining characteristics of micro-EDM during the microhole machining operation on Ti—6Al—4V has been carried out. The matrix experiments have been designed based on rotatable central composite design. Peak-current (Ip), pulse-on time (Ton), and dielectric flushing pressure have been considered as process parameters during the microhole machining operation and these parameters were utilized for developing the ANN predicting model. The performance measures for optimization were material removal rate (MRR), tool wear rate (TWR), and overcut (OC). The ANN model was developed using a back-propagation neural network algorithm, which was trained with response values obtained from the experimental results. The Levenberg—Marquardt training algorithm has been used for a multilayer feed-forward network. The developed model was validated using data obtained by conducting a set of test experiments. The optimal combination of process parametric settings obtained are pulse-on-time of 14.2093 μs, peak current of 0.8363 A, and flushing pressure of 0.10 kg/cm 2 for achieving the desired MRR, TWR, and OC. The output of RSM optimal data was validated through experimentation and the ANN predicted model. A close agreement was observed among the actual experimental, RSM, and ANN predictive results." @default.
- W2037137778 created "2016-06-24" @default.
- W2037137778 creator A5068853688 @default.
- W2037137778 creator A5078394928 @default.
- W2037137778 date "2009-03-18" @default.
- W2037137778 modified "2023-09-26" @default.
- W2037137778 title "Modelling of micro-electrodischarge machining during machining of titanium alloy Ti—6Al—4V using response surface methodology and artificial neural network algorithm" @default.
- W2037137778 cites W1969901695 @default.
- W2037137778 cites W1979330056 @default.
- W2037137778 cites W1990683783 @default.
- W2037137778 cites W2010023006 @default.
- W2037137778 cites W2012905846 @default.
- W2037137778 cites W2056047105 @default.
- W2037137778 cites W2062912950 @default.
- W2037137778 cites W2092266314 @default.
- W2037137778 cites W2092806013 @default.
- W2037137778 cites W2094765181 @default.
- W2037137778 cites W2166438886 @default.
- W2037137778 doi "https://doi.org/10.1243/09544054jem1343" @default.
- W2037137778 hasPublicationYear "2009" @default.
- W2037137778 type Work @default.
- W2037137778 sameAs 2037137778 @default.
- W2037137778 citedByCount "47" @default.
- W2037137778 countsByYear W20371377782012 @default.
- W2037137778 countsByYear W20371377782013 @default.
- W2037137778 countsByYear W20371377782014 @default.
- W2037137778 countsByYear W20371377782016 @default.
- W2037137778 countsByYear W20371377782017 @default.
- W2037137778 countsByYear W20371377782018 @default.
- W2037137778 countsByYear W20371377782019 @default.
- W2037137778 countsByYear W20371377782020 @default.
- W2037137778 countsByYear W20371377782021 @default.
- W2037137778 countsByYear W20371377782022 @default.
- W2037137778 countsByYear W20371377782023 @default.
- W2037137778 crossrefType "journal-article" @default.
- W2037137778 hasAuthorship W2037137778A5068853688 @default.
- W2037137778 hasAuthorship W2037137778A5078394928 @default.
- W2037137778 hasConcept C119857082 @default.
- W2037137778 hasConcept C127413603 @default.
- W2037137778 hasConcept C140075996 @default.
- W2037137778 hasConcept C150077022 @default.
- W2037137778 hasConcept C155032097 @default.
- W2037137778 hasConcept C191897082 @default.
- W2037137778 hasConcept C192562407 @default.
- W2037137778 hasConcept C2780026712 @default.
- W2037137778 hasConcept C41008148 @default.
- W2037137778 hasConcept C50644808 @default.
- W2037137778 hasConcept C523214423 @default.
- W2037137778 hasConcept C78519656 @default.
- W2037137778 hasConcept C8953137 @default.
- W2037137778 hasConceptScore W2037137778C119857082 @default.
- W2037137778 hasConceptScore W2037137778C127413603 @default.
- W2037137778 hasConceptScore W2037137778C140075996 @default.
- W2037137778 hasConceptScore W2037137778C150077022 @default.
- W2037137778 hasConceptScore W2037137778C155032097 @default.
- W2037137778 hasConceptScore W2037137778C191897082 @default.
- W2037137778 hasConceptScore W2037137778C192562407 @default.
- W2037137778 hasConceptScore W2037137778C2780026712 @default.
- W2037137778 hasConceptScore W2037137778C41008148 @default.
- W2037137778 hasConceptScore W2037137778C50644808 @default.
- W2037137778 hasConceptScore W2037137778C523214423 @default.
- W2037137778 hasConceptScore W2037137778C78519656 @default.
- W2037137778 hasConceptScore W2037137778C8953137 @default.
- W2037137778 hasIssue "6" @default.
- W2037137778 hasLocation W20371377781 @default.
- W2037137778 hasOpenAccess W2037137778 @default.
- W2037137778 hasPrimaryLocation W20371377781 @default.
- W2037137778 hasRelatedWork W1967654988 @default.
- W2037137778 hasRelatedWork W1975062128 @default.
- W2037137778 hasRelatedWork W1991236959 @default.
- W2037137778 hasRelatedWork W2004173252 @default.
- W2037137778 hasRelatedWork W2052926074 @default.
- W2037137778 hasRelatedWork W2332315908 @default.
- W2037137778 hasRelatedWork W2557075940 @default.
- W2037137778 hasRelatedWork W3114869433 @default.
- W2037137778 hasRelatedWork W4205670573 @default.
- W2037137778 hasRelatedWork W2567335875 @default.
- W2037137778 hasVolume "223" @default.
- W2037137778 isParatext "false" @default.
- W2037137778 isRetracted "false" @default.
- W2037137778 magId "2037137778" @default.
- W2037137778 workType "article" @default.