Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037150971> ?p ?o ?g. }
- W2037150971 endingPage "3932" @default.
- W2037150971 startingPage "3909" @default.
- W2037150971 abstract "Abstract. Using the 1-D atmospheric chemistry transport model SOSAA, we have investigated the atmospheric reactivity of a boreal forest ecosystem during the HUMPPA-COPEC-10 campaign (summer 2010, at SMEAR~II in southern Finland). For the very first time, we present vertically resolved model simulations of the NO3 and O3 reactivity (R) together with the modelled and measured reactivity of OH. We find that OH is the most reactive oxidant (R ∼ 3 s-1) followed by NO3 (R ∼ 0.07 s-1) and O3 (R ∼ 2 × 10-5s-1). The missing OH reactivity was found to be large in accordance with measurements (∼ 65%) as would be expected from the chemical subset described in the model. The accounted OH radical sinks were inorganic compounds (∼ 41%, mainly due to reaction with CO), emitted monoterpenes (∼ 14%) and oxidised biogenic volatile organic compounds (∼ 44%). The missing reactivity is expected to be due to unknown biogenic volatile organic compounds and their photoproducts, indicating that the true main sink of OH is not expected to be inorganic compounds. The NO3 radical was found to react mainly with primary emitted monoterpenes (∼ 60%) and inorganic compounds (∼ 37%, including NO2). NO2 is, however, only a temporary sink of NO3 under the conditions of the campaign (with typical temperatures of 20–25 °C) and does not affect the NO3 concentration. We discuss the difference between instantaneous and steady-state reactivity and present the first boreal forest steady-state lifetime of NO3 (113 s). O3 almost exclusively reacts with inorganic compounds (∼ 91%, mainly NO, but also NO2 during night) and less with primary emitted sesquiterpenes (∼ 6%) and monoterpenes (∼ 3%). When considering the concentration of the oxidants investigated, we find that OH is the oxidant that is capable of removing organic compounds at a faster rate during daytime, whereas NO3 can remove organic molecules at a faster rate during night-time. O3 competes with OH and NO3 during a short period of time in the early morning (around 5 a.m. local time) and in the evening (around 7–8 p.m.). As part of this study, we developed a simple empirical parameterisation for conversion of measured spectral irradiance into actinic flux. Further, the meteorological conditions were evaluated using radiosonde observations and ground-based measurements. The overall vertical structure of the boundary layer is discussed, together with validation of the surface energy balance and turbulent fluxes. The sensible heat and momentum fluxes above the canopy were on average overestimated, while the latent heat flux was underestimated." @default.
- W2037150971 created "2016-06-24" @default.
- W2037150971 creator A5000471665 @default.
- W2037150971 creator A5009283420 @default.
- W2037150971 creator A5026129001 @default.
- W2037150971 creator A5035655908 @default.
- W2037150971 creator A5057502580 @default.
- W2037150971 creator A5061641588 @default.
- W2037150971 creator A5062767866 @default.
- W2037150971 creator A5077324257 @default.
- W2037150971 creator A5081117962 @default.
- W2037150971 creator A5081177756 @default.
- W2037150971 creator A5090100318 @default.
- W2037150971 creator A5091107610 @default.
- W2037150971 date "2015-04-15" @default.
- W2037150971 modified "2023-10-01" @default.
- W2037150971 title "Simulations of atmospheric OH, O<sub>3</sub> and NO<sub>3</sub> reactivities within and above the boreal forest" @default.
- W2037150971 cites W1495647369 @default.
- W2037150971 cites W1497710305 @default.
- W2037150971 cites W1667277804 @default.
- W2037150971 cites W1975360462 @default.
- W2037150971 cites W1978153810 @default.
- W2037150971 cites W1980182854 @default.
- W2037150971 cites W1988689801 @default.
- W2037150971 cites W1990389037 @default.
- W2037150971 cites W1999460920 @default.
- W2037150971 cites W2001253109 @default.
- W2037150971 cites W2002044731 @default.
- W2037150971 cites W2002570697 @default.
- W2037150971 cites W2009670311 @default.
- W2037150971 cites W2011133363 @default.
- W2037150971 cites W2018343022 @default.
- W2037150971 cites W2020904648 @default.
- W2037150971 cites W2025363659 @default.
- W2037150971 cites W2032551186 @default.
- W2037150971 cites W2038722006 @default.
- W2037150971 cites W2040450731 @default.
- W2037150971 cites W2043701925 @default.
- W2037150971 cites W2044160173 @default.
- W2037150971 cites W2045540305 @default.
- W2037150971 cites W2045617521 @default.
- W2037150971 cites W2061066064 @default.
- W2037150971 cites W2062139392 @default.
- W2037150971 cites W2066366371 @default.
- W2037150971 cites W2067875456 @default.
- W2037150971 cites W2068405658 @default.
- W2037150971 cites W2080131815 @default.
- W2037150971 cites W2080319365 @default.
- W2037150971 cites W2089801178 @default.
- W2037150971 cites W2090965577 @default.
- W2037150971 cites W2102468142 @default.
- W2037150971 cites W2106850802 @default.
- W2037150971 cites W2110173852 @default.
- W2037150971 cites W2111286455 @default.
- W2037150971 cites W2114645214 @default.
- W2037150971 cites W2119895530 @default.
- W2037150971 cites W2119939887 @default.
- W2037150971 cites W2120605744 @default.
- W2037150971 cites W2120938206 @default.
- W2037150971 cites W2121472298 @default.
- W2037150971 cites W2121503146 @default.
- W2037150971 cites W2121532593 @default.
- W2037150971 cites W2121745948 @default.
- W2037150971 cites W2122223730 @default.
- W2037150971 cites W2124610638 @default.
- W2037150971 cites W2128081947 @default.
- W2037150971 cites W2131602339 @default.
- W2037150971 cites W2132198499 @default.
- W2037150971 cites W2132229638 @default.
- W2037150971 cites W2136693712 @default.
- W2037150971 cites W2142602061 @default.
- W2037150971 cites W2142827701 @default.
- W2037150971 cites W2142912016 @default.
- W2037150971 cites W2143205548 @default.
- W2037150971 cites W2143422504 @default.
- W2037150971 cites W2149711749 @default.
- W2037150971 cites W2150862894 @default.
- W2037150971 cites W2152287980 @default.
- W2037150971 cites W2152344065 @default.
- W2037150971 cites W2152784211 @default.
- W2037150971 cites W2153160115 @default.
- W2037150971 cites W2154420925 @default.
- W2037150971 cites W2157459392 @default.
- W2037150971 cites W2158509532 @default.
- W2037150971 cites W2164973274 @default.
- W2037150971 cites W2167204182 @default.
- W2037150971 cites W2167308833 @default.
- W2037150971 cites W2169609590 @default.
- W2037150971 cites W2169746086 @default.
- W2037150971 cites W3033358318 @default.
- W2037150971 cites W4234894215 @default.
- W2037150971 cites W4322696943 @default.
- W2037150971 doi "https://doi.org/10.5194/acp-15-3909-2015" @default.
- W2037150971 hasPublicationYear "2015" @default.
- W2037150971 type Work @default.
- W2037150971 sameAs 2037150971 @default.
- W2037150971 citedByCount "43" @default.
- W2037150971 countsByYear W20371509712015 @default.