Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037181504> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2037181504 endingPage "1219" @default.
- W2037181504 startingPage "1187" @default.
- W2037181504 abstract "Let A be a symmetrizable affine or hyperbolic generalized Cartan matrix. Let G be a locally compact Kac–Moody group associated to A over a finite field 𝔽 q . We suppose that G has type ∞, that is, the Weyl group W of G is a free product of ℤ/2ℤ's. This includes all locally compact Kac–Moody groups of rank 2 and three possible locally compact rank 3 Kac–Moody groups of noncompact hyperbolic type. For every prime power q, we give a sufficient condition for the rank 2 Kac–Moody group G to contain a cocompact lattice [Formula: see text] with quotient a simplex, and we show that this condition is satisfied when q = 2 s . If further M q and [Formula: see text] are abelian, we give a method for constructing an infinite descending chain of cocompact lattices … Γ 3 ≤ Γ 2 ≤ Γ 1 ≤ Γ. This allows us to characterize each of the quotient graphs of groups Γ i X, the presentations of the Γ i and their covolumes, where X is the Tits building of G, a homogeneous tree. Our approach is to extend coverings of edge-indexed graphs to covering morphisms of graphs of groups with abelian groupings. This method is not specific to cocompact lattices in Kac–Moody groups and may be used to produce chains of subgroups acting on trees in a general setting. It follows that the lattices constructed in the rank 2 Kac–Moody group have the Haagerup property. When q = 2 and rank (G) = 3 we show that G contains a cocompact lattice Γ′ 1 that acts discretely and cocompactly on a simplicial tree [Formula: see text]. The tree [Formula: see text] is naturally embedded in the Tits building X of G, a rank 3 hyperbolic building. Moreover Γ′ 1 ≤ Λ′ for a non-discrete subgroup Λ′ ≤ G whose quotient Λ′ X is equal to GX. Using the action of Γ′ 1 on [Formula: see text] we construct an infinite descending chain of cocompact lattices …Γ′ 3 ≤ Γ′ 2 ≤ Γ′ 1 in G. We also determine the quotient graphs of groups [Formula: see text], the presentations of the Γ′ i and their covolumes." @default.
- W2037181504 created "2016-06-24" @default.
- W2037181504 creator A5066964597 @default.
- W2037181504 creator A5022533031 @default.
- W2037181504 date "2011-12-01" @default.
- W2037181504 modified "2023-09-25" @default.
- W2037181504 title "INFINITE DESCENDING CHAINS OF COCOMPACT LATTICES IN KAC–MOODY GROUPS" @default.
- W2037181504 cites W1518430121 @default.
- W2037181504 cites W157802207 @default.
- W2037181504 cites W1978255231 @default.
- W2037181504 cites W1982085400 @default.
- W2037181504 cites W1986009900 @default.
- W2037181504 cites W1988677114 @default.
- W2037181504 cites W1992703531 @default.
- W2037181504 cites W2000147192 @default.
- W2037181504 cites W2010351101 @default.
- W2037181504 cites W2032814589 @default.
- W2037181504 cites W2040960421 @default.
- W2037181504 cites W2050616209 @default.
- W2037181504 cites W2129671680 @default.
- W2037181504 cites W2134086356 @default.
- W2037181504 cites W2166632338 @default.
- W2037181504 cites W2170269583 @default.
- W2037181504 cites W2809113709 @default.
- W2037181504 cites W4253313367 @default.
- W2037181504 doi "https://doi.org/10.1142/s0219498811005130" @default.
- W2037181504 hasPublicationYear "2011" @default.
- W2037181504 type Work @default.
- W2037181504 sameAs 2037181504 @default.
- W2037181504 citedByCount "4" @default.
- W2037181504 countsByYear W20371815042012 @default.
- W2037181504 countsByYear W20371815042013 @default.
- W2037181504 countsByYear W20371815042016 @default.
- W2037181504 crossrefType "journal-article" @default.
- W2037181504 hasAuthorship W2037181504A5022533031 @default.
- W2037181504 hasAuthorship W2037181504A5066964597 @default.
- W2037181504 hasBestOaLocation W20371815042 @default.
- W2037181504 hasConcept C114614502 @default.
- W2037181504 hasConcept C121332964 @default.
- W2037181504 hasConcept C136170076 @default.
- W2037181504 hasConcept C164226766 @default.
- W2037181504 hasConcept C178790620 @default.
- W2037181504 hasConcept C185592680 @default.
- W2037181504 hasConcept C199422724 @default.
- W2037181504 hasConcept C202444582 @default.
- W2037181504 hasConcept C24890656 @default.
- W2037181504 hasConcept C2781204021 @default.
- W2037181504 hasConcept C2781311116 @default.
- W2037181504 hasConcept C31498916 @default.
- W2037181504 hasConcept C33923547 @default.
- W2037181504 hasConcept C47527751 @default.
- W2037181504 hasConcept C92757383 @default.
- W2037181504 hasConceptScore W2037181504C114614502 @default.
- W2037181504 hasConceptScore W2037181504C121332964 @default.
- W2037181504 hasConceptScore W2037181504C136170076 @default.
- W2037181504 hasConceptScore W2037181504C164226766 @default.
- W2037181504 hasConceptScore W2037181504C178790620 @default.
- W2037181504 hasConceptScore W2037181504C185592680 @default.
- W2037181504 hasConceptScore W2037181504C199422724 @default.
- W2037181504 hasConceptScore W2037181504C202444582 @default.
- W2037181504 hasConceptScore W2037181504C24890656 @default.
- W2037181504 hasConceptScore W2037181504C2781204021 @default.
- W2037181504 hasConceptScore W2037181504C2781311116 @default.
- W2037181504 hasConceptScore W2037181504C31498916 @default.
- W2037181504 hasConceptScore W2037181504C33923547 @default.
- W2037181504 hasConceptScore W2037181504C47527751 @default.
- W2037181504 hasConceptScore W2037181504C92757383 @default.
- W2037181504 hasIssue "06" @default.
- W2037181504 hasLocation W20371815041 @default.
- W2037181504 hasLocation W20371815042 @default.
- W2037181504 hasOpenAccess W2037181504 @default.
- W2037181504 hasPrimaryLocation W20371815041 @default.
- W2037181504 hasRelatedWork W1821847917 @default.
- W2037181504 hasRelatedWork W1985218657 @default.
- W2037181504 hasRelatedWork W2006990530 @default.
- W2037181504 hasRelatedWork W2021858501 @default.
- W2037181504 hasRelatedWork W2024921743 @default.
- W2037181504 hasRelatedWork W2082128351 @default.
- W2037181504 hasRelatedWork W2892334447 @default.
- W2037181504 hasRelatedWork W2962698316 @default.
- W2037181504 hasRelatedWork W2963456550 @default.
- W2037181504 hasRelatedWork W4250829538 @default.
- W2037181504 hasVolume "10" @default.
- W2037181504 isParatext "false" @default.
- W2037181504 isRetracted "false" @default.
- W2037181504 magId "2037181504" @default.
- W2037181504 workType "article" @default.