Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037199905> ?p ?o ?g. }
- W2037199905 endingPage "2192" @default.
- W2037199905 startingPage "2178" @default.
- W2037199905 abstract "The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures." @default.
- W2037199905 created "2016-06-24" @default.
- W2037199905 creator A5010097254 @default.
- W2037199905 creator A5040086890 @default.
- W2037199905 date "2014-06-01" @default.
- W2037199905 modified "2023-09-26" @default.
- W2037199905 title "Moments and root-mean-square error of the Bayesian MMSE estimator of classification error in the Gaussian model" @default.
- W2037199905 cites W1964496517 @default.
- W2037199905 cites W1980879760 @default.
- W2037199905 cites W1999584558 @default.
- W2037199905 cites W2000659333 @default.
- W2037199905 cites W2008141180 @default.
- W2037199905 cites W2026628137 @default.
- W2037199905 cites W2030478261 @default.
- W2037199905 cites W2057658881 @default.
- W2037199905 cites W2061122220 @default.
- W2037199905 cites W2063045111 @default.
- W2037199905 cites W2065175896 @default.
- W2037199905 cites W2071465809 @default.
- W2037199905 cites W2096552892 @default.
- W2037199905 cites W2108806834 @default.
- W2037199905 cites W2112207178 @default.
- W2037199905 cites W2117691770 @default.
- W2037199905 cites W2118250684 @default.
- W2037199905 cites W2119985557 @default.
- W2037199905 cites W2120503632 @default.
- W2037199905 cites W2127947512 @default.
- W2037199905 cites W2134258050 @default.
- W2037199905 cites W2136246403 @default.
- W2037199905 cites W2144285986 @default.
- W2037199905 cites W2145236186 @default.
- W2037199905 cites W2146403040 @default.
- W2037199905 cites W2147294044 @default.
- W2037199905 cites W2166162270 @default.
- W2037199905 doi "https://doi.org/10.1016/j.patcog.2013.11.022" @default.
- W2037199905 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3979595" @default.
- W2037199905 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24729636" @default.
- W2037199905 hasPublicationYear "2014" @default.
- W2037199905 type Work @default.
- W2037199905 sameAs 2037199905 @default.
- W2037199905 citedByCount "25" @default.
- W2037199905 countsByYear W20371999052014 @default.
- W2037199905 countsByYear W20371999052015 @default.
- W2037199905 countsByYear W20371999052016 @default.
- W2037199905 countsByYear W20371999052017 @default.
- W2037199905 countsByYear W20371999052018 @default.
- W2037199905 countsByYear W20371999052020 @default.
- W2037199905 countsByYear W20371999052021 @default.
- W2037199905 countsByYear W20371999052022 @default.
- W2037199905 countsByYear W20371999052023 @default.
- W2037199905 crossrefType "journal-article" @default.
- W2037199905 hasAuthorship W2037199905A5010097254 @default.
- W2037199905 hasAuthorship W2037199905A5040086890 @default.
- W2037199905 hasBestOaLocation W20371999052 @default.
- W2037199905 hasConcept C105795698 @default.
- W2037199905 hasConcept C107673813 @default.
- W2037199905 hasConcept C11413529 @default.
- W2037199905 hasConcept C11577676 @default.
- W2037199905 hasConcept C121332964 @default.
- W2037199905 hasConcept C129848803 @default.
- W2037199905 hasConcept C139945424 @default.
- W2037199905 hasConcept C153180895 @default.
- W2037199905 hasConcept C154945302 @default.
- W2037199905 hasConcept C163716315 @default.
- W2037199905 hasConcept C185429906 @default.
- W2037199905 hasConcept C2524010 @default.
- W2037199905 hasConcept C28826006 @default.
- W2037199905 hasConcept C33923547 @default.
- W2037199905 hasConcept C41008148 @default.
- W2037199905 hasConcept C62520636 @default.
- W2037199905 hasConcept C90652560 @default.
- W2037199905 hasConceptScore W2037199905C105795698 @default.
- W2037199905 hasConceptScore W2037199905C107673813 @default.
- W2037199905 hasConceptScore W2037199905C11413529 @default.
- W2037199905 hasConceptScore W2037199905C11577676 @default.
- W2037199905 hasConceptScore W2037199905C121332964 @default.
- W2037199905 hasConceptScore W2037199905C129848803 @default.
- W2037199905 hasConceptScore W2037199905C139945424 @default.
- W2037199905 hasConceptScore W2037199905C153180895 @default.
- W2037199905 hasConceptScore W2037199905C154945302 @default.
- W2037199905 hasConceptScore W2037199905C163716315 @default.
- W2037199905 hasConceptScore W2037199905C185429906 @default.
- W2037199905 hasConceptScore W2037199905C2524010 @default.
- W2037199905 hasConceptScore W2037199905C28826006 @default.
- W2037199905 hasConceptScore W2037199905C33923547 @default.
- W2037199905 hasConceptScore W2037199905C41008148 @default.
- W2037199905 hasConceptScore W2037199905C62520636 @default.
- W2037199905 hasConceptScore W2037199905C90652560 @default.
- W2037199905 hasIssue "6" @default.
- W2037199905 hasLocation W20371999051 @default.
- W2037199905 hasLocation W20371999052 @default.
- W2037199905 hasLocation W20371999053 @default.
- W2037199905 hasLocation W20371999054 @default.
- W2037199905 hasLocation W20371999055 @default.
- W2037199905 hasLocation W20371999056 @default.
- W2037199905 hasOpenAccess W2037199905 @default.
- W2037199905 hasPrimaryLocation W20371999051 @default.
- W2037199905 hasRelatedWork W106751956 @default.