Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037269013> ?p ?o ?g. }
- W2037269013 endingPage "360" @default.
- W2037269013 startingPage "347" @default.
- W2037269013 abstract "Niobium and Ta concentrations in MPI‐DING and USGS (BCR‐2G, BHVO‐2G, BIR‐1G) silicate rock glasses and the NIST SRM 610–614 synthetic soda‐lime glasses were determined by 193 nm ArF excimer laser ablation and quadrupole ICP‐MS. Measured Nb and Ta values of MPI‐DING glasses were found to be consistently lower than the recommended values by about 15% and 25%, respectively, if calibration was undertaken using commonly accepted values of NIST SRM 610 given by Pearce et al. Analytical precision, as given by the 1 s relative standard deviation (% RSD) was less than 10% for Nb and Ta at concentrations higher than 0.1 μg g −1 . A significant negative correlation was found between logarithmic concentration and logarithmic RSD, with correlation coefficients of ‐0.94 for Nb and ‐0.96 for Ta. This trend indicates that the analytical precision follows counting statistics and thus most of the measurement uncertainty was analytical in origin and not due to chemical heterogeneities. Large differences between measured and expected Nb and Ta in glasses GOR128‐G and GOR132‐G are likely to have been caused by the high RSDs associated with their very low concentrations. However, this cannot explain the large differences between measured and expected Nb and Ta in other MPI‐DING glasses, since the differences are normally higher than RSD by a factor of 3. Count rates for Nb and Ta, normalised to Ca sensitivity, for the MPI‐DING, USGS and NIST SRM 612–614 glasses were used to construct calibration curves for determining NIST SRM 610 concentrations at crater diameters ranging from 16 (im to 60 μm. The excellent correlation between the Nb/Ca 1μgg‐1 signal (Nb represents the Nb signal intensity; Ca 1μg g‐1 represents the Ca sensitivity) and Nb concentration, and between the Ta/Ca 1μg g‐1 signal (where Ta represents the Ta signal intensity; Ca 1μg g‐1 represents the Ca sensitivity) and Ta concentration (R 2 = 0.9992–1.00) in the various glass matrices suggests that matrix‐dependent fractionation for Nb, Ta and Ca was insignificant under the given instrumental conditions. The results confirm that calibration reference values of Nb and Ta in NIST SRM 610 given by Pearce et al. are about 16% and 28% lower, respectively. We thus propose a revision of the preferred value for Nb from 419.4 ± 57.6 μg g −1 to 485 ± 5 μg g −1 (1 s) and for Ta from 376.6 ± 77.6 μg g −1 to 482 ± 4 μg g −1 (Is) in NIST SRM 610. Using these revised values for external calibration, most of the determined average values of MPI‐DING, USGS and NIST SRM 612–614 reference glasses agree within 3% with the calculated means of reported reference values. Bulk analysis of NIST SRM 610 by standard additions using membrane desolvation ICP‐MS gave Nb = 479 ± 6 μg g −1 (1 s) and Ta = 468 ± 7 μg g −1 (1 s), which agree with the above revised values within 3%." @default.
- W2037269013 created "2016-06-24" @default.
- W2037269013 creator A5045193796 @default.
- W2037269013 creator A5051126513 @default.
- W2037269013 creator A5055299145 @default.
- W2037269013 creator A5081654328 @default.
- W2037269013 creator A5084263315 @default.
- W2037269013 creator A5085187269 @default.
- W2037269013 date "2008-09-01" @default.
- W2037269013 modified "2023-10-18" @default.
- W2037269013 title "Niobium and Tantalum Concentrations in NIST SRM 610 Revisited" @default.
- W2037269013 cites W1846057075 @default.
- W2037269013 cites W1963982955 @default.
- W2037269013 cites W1964323759 @default.
- W2037269013 cites W1970056627 @default.
- W2037269013 cites W1972401026 @default.
- W2037269013 cites W1973946115 @default.
- W2037269013 cites W1974731988 @default.
- W2037269013 cites W1978548903 @default.
- W2037269013 cites W1980640006 @default.
- W2037269013 cites W1982867305 @default.
- W2037269013 cites W1986259706 @default.
- W2037269013 cites W1987734384 @default.
- W2037269013 cites W1988215475 @default.
- W2037269013 cites W1995813894 @default.
- W2037269013 cites W1996683109 @default.
- W2037269013 cites W2001772043 @default.
- W2037269013 cites W2001932843 @default.
- W2037269013 cites W2006896663 @default.
- W2037269013 cites W2007661953 @default.
- W2037269013 cites W2015397945 @default.
- W2037269013 cites W2018236251 @default.
- W2037269013 cites W2020751352 @default.
- W2037269013 cites W2020973699 @default.
- W2037269013 cites W2024436619 @default.
- W2037269013 cites W2028038107 @default.
- W2037269013 cites W2032335214 @default.
- W2037269013 cites W2041398136 @default.
- W2037269013 cites W2043521417 @default.
- W2037269013 cites W2044811560 @default.
- W2037269013 cites W2049366175 @default.
- W2037269013 cites W2050579914 @default.
- W2037269013 cites W2058459535 @default.
- W2037269013 cites W2058834305 @default.
- W2037269013 cites W2060475788 @default.
- W2037269013 cites W2061095231 @default.
- W2037269013 cites W2068226577 @default.
- W2037269013 cites W2068328836 @default.
- W2037269013 cites W2071375626 @default.
- W2037269013 cites W2072062807 @default.
- W2037269013 cites W2073222579 @default.
- W2037269013 cites W2073369132 @default.
- W2037269013 cites W2076936093 @default.
- W2037269013 cites W2085664386 @default.
- W2037269013 cites W2089866577 @default.
- W2037269013 cites W2091847823 @default.
- W2037269013 cites W2128499603 @default.
- W2037269013 cites W2129175073 @default.
- W2037269013 cites W2130280015 @default.
- W2037269013 cites W2133610516 @default.
- W2037269013 cites W2138063407 @default.
- W2037269013 cites W2142427242 @default.
- W2037269013 cites W2145159677 @default.
- W2037269013 cites W2161346058 @default.
- W2037269013 cites W2162477524 @default.
- W2037269013 cites W2581834115 @default.
- W2037269013 cites W4246511132 @default.
- W2037269013 doi "https://doi.org/10.1111/j.1751-908x.2008.00889.x" @default.
- W2037269013 hasPublicationYear "2008" @default.
- W2037269013 type Work @default.
- W2037269013 sameAs 2037269013 @default.
- W2037269013 citedByCount "20" @default.
- W2037269013 countsByYear W20372690132012 @default.
- W2037269013 countsByYear W20372690132013 @default.
- W2037269013 countsByYear W20372690132014 @default.
- W2037269013 countsByYear W20372690132016 @default.
- W2037269013 countsByYear W20372690132017 @default.
- W2037269013 countsByYear W20372690132018 @default.
- W2037269013 crossrefType "journal-article" @default.
- W2037269013 hasAuthorship W2037269013A5045193796 @default.
- W2037269013 hasAuthorship W2037269013A5051126513 @default.
- W2037269013 hasAuthorship W2037269013A5055299145 @default.
- W2037269013 hasAuthorship W2037269013A5081654328 @default.
- W2037269013 hasAuthorship W2037269013A5084263315 @default.
- W2037269013 hasAuthorship W2037269013A5085187269 @default.
- W2037269013 hasConcept C105795698 @default.
- W2037269013 hasConcept C111219384 @default.
- W2037269013 hasConcept C113196181 @default.
- W2037269013 hasConcept C119128265 @default.
- W2037269013 hasConcept C165838908 @default.
- W2037269013 hasConcept C185592680 @default.
- W2037269013 hasConcept C191897082 @default.
- W2037269013 hasConcept C192562407 @default.
- W2037269013 hasConcept C204321447 @default.
- W2037269013 hasConcept C22679943 @default.
- W2037269013 hasConcept C23531484 @default.
- W2037269013 hasConcept C33923547 @default.
- W2037269013 hasConcept C41008148 @default.