Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037275752> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2037275752 abstract "Modeling repeated measurements data has been studied extensively lately in the parametric situation. However, it is significant to study the effect of various treatments over a period of time where the repeated measurements on the same subject are expected to be correlated. The correlation among the repeated measurements for all the subjects will be studied via the covariance matrix. The positive definite constraint is one of obstacles that encounters modeling the covariance structure, however the Cholesky decomposition removes this constraint and allows modeling the components of the covariance matrix [M. Pourahmadi, Joint mean-covariance models with applications to longitudinal data: unconstrained parameterization, Biometrika 86 (1999) 677-690]. In this paper, we adopt the estimation procedures introduced by Diggle and Verbyla [Nonparametric estimation of covariance structure in longitudinal data, Biometrics 54 (1998) 401-415] where the variogram cloud as well as the squared residuals are used to estimate the variogram and the variances via the kernel smoothing. Selecting the appropriate bandwidth value is one of the important steps in the estimation process, thus in our data analysis we choose the bandwidth using one of the most simple straight forward methods which is the cross-validation method developed by Rice and Silverman [Estimating the mean and covariance structure nonparametrically when the data are curves, J. Roy. Statist. Soc. B 53 (1991) 233-243] and adapted by others. Finally we apply these nonparametric techniques as well as a graphical method [M. Pourahmadi, Joint mean-covariance models with applications to longitudinal data: unconstrained parameterization, Biometrika 86 (1999) 677-690] to a real life data and use the penalized likelihood criterion like AIC and BIC to compare models of our interest. our interest." @default.
- W2037275752 created "2016-06-24" @default.
- W2037275752 creator A5047027570 @default.
- W2037275752 date "2005-08-01" @default.
- W2037275752 modified "2023-10-17" @default.
- W2037275752 title "Covariance matrix estimation using repeated measurements when data are incomplete" @default.
- W2037275752 cites W1519703307 @default.
- W2037275752 cites W1965284210 @default.
- W2037275752 cites W1967801999 @default.
- W2037275752 cites W1975844254 @default.
- W2037275752 cites W1976160686 @default.
- W2037275752 cites W1995695181 @default.
- W2037275752 cites W1999692645 @default.
- W2037275752 cites W1999975842 @default.
- W2037275752 cites W2023156642 @default.
- W2037275752 cites W2037662723 @default.
- W2037275752 cites W2040595932 @default.
- W2037275752 cites W2047046780 @default.
- W2037275752 cites W2050497240 @default.
- W2037275752 cites W2059883994 @default.
- W2037275752 cites W206706296 @default.
- W2037275752 cites W2069888879 @default.
- W2037275752 cites W2075681335 @default.
- W2037275752 cites W2075807431 @default.
- W2037275752 cites W2082246284 @default.
- W2037275752 cites W2101424588 @default.
- W2037275752 cites W2106139345 @default.
- W2037275752 cites W2132890483 @default.
- W2037275752 cites W2143022286 @default.
- W2037275752 cites W2145816995 @default.
- W2037275752 cites W2149860264 @default.
- W2037275752 cites W2160306985 @default.
- W2037275752 cites W2326449955 @default.
- W2037275752 cites W2508939449 @default.
- W2037275752 cites W2797583072 @default.
- W2037275752 cites W2801830100 @default.
- W2037275752 doi "https://doi.org/10.1016/j.amc.2004.06.091" @default.
- W2037275752 hasPublicationYear "2005" @default.
- W2037275752 type Work @default.
- W2037275752 sameAs 2037275752 @default.
- W2037275752 citedByCount "2" @default.
- W2037275752 countsByYear W20372757522012 @default.
- W2037275752 countsByYear W20372757522013 @default.
- W2037275752 crossrefType "journal-article" @default.
- W2037275752 hasAuthorship W2037275752A5047027570 @default.
- W2037275752 hasConcept C105795698 @default.
- W2037275752 hasConcept C121332964 @default.
- W2037275752 hasConcept C126372606 @default.
- W2037275752 hasConcept C137250428 @default.
- W2037275752 hasConcept C154881674 @default.
- W2037275752 hasConcept C158693339 @default.
- W2037275752 hasConcept C178650346 @default.
- W2037275752 hasConcept C180877172 @default.
- W2037275752 hasConcept C185142706 @default.
- W2037275752 hasConcept C28826006 @default.
- W2037275752 hasConcept C33923547 @default.
- W2037275752 hasConcept C34727166 @default.
- W2037275752 hasConcept C3770464 @default.
- W2037275752 hasConcept C62520636 @default.
- W2037275752 hasConcept C81692654 @default.
- W2037275752 hasConcept C83042196 @default.
- W2037275752 hasConceptScore W2037275752C105795698 @default.
- W2037275752 hasConceptScore W2037275752C121332964 @default.
- W2037275752 hasConceptScore W2037275752C126372606 @default.
- W2037275752 hasConceptScore W2037275752C137250428 @default.
- W2037275752 hasConceptScore W2037275752C154881674 @default.
- W2037275752 hasConceptScore W2037275752C158693339 @default.
- W2037275752 hasConceptScore W2037275752C178650346 @default.
- W2037275752 hasConceptScore W2037275752C180877172 @default.
- W2037275752 hasConceptScore W2037275752C185142706 @default.
- W2037275752 hasConceptScore W2037275752C28826006 @default.
- W2037275752 hasConceptScore W2037275752C33923547 @default.
- W2037275752 hasConceptScore W2037275752C34727166 @default.
- W2037275752 hasConceptScore W2037275752C3770464 @default.
- W2037275752 hasConceptScore W2037275752C62520636 @default.
- W2037275752 hasConceptScore W2037275752C81692654 @default.
- W2037275752 hasConceptScore W2037275752C83042196 @default.
- W2037275752 hasLocation W20372757521 @default.
- W2037275752 hasOpenAccess W2037275752 @default.
- W2037275752 hasPrimaryLocation W20372757521 @default.
- W2037275752 hasRelatedWork W1910942334 @default.
- W2037275752 hasRelatedWork W2010556207 @default.
- W2037275752 hasRelatedWork W2032320744 @default.
- W2037275752 hasRelatedWork W2041670155 @default.
- W2037275752 hasRelatedWork W2044724570 @default.
- W2037275752 hasRelatedWork W2050407974 @default.
- W2037275752 hasRelatedWork W2053857576 @default.
- W2037275752 hasRelatedWork W2099216015 @default.
- W2037275752 hasRelatedWork W2398619030 @default.
- W2037275752 hasRelatedWork W2909685392 @default.
- W2037275752 isParatext "false" @default.
- W2037275752 isRetracted "false" @default.
- W2037275752 magId "2037275752" @default.
- W2037275752 workType "article" @default.