Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037286145> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2037286145 endingPage "306" @default.
- W2037286145 startingPage "297" @default.
- W2037286145 abstract "Resolution of synthetic aperture radar (SAR) images is limited by imaging hardware. To improve SAR image resolution, interpolation needs to be carried out on a SAR image. An image interpolation algorithm with a good effect incurs a high computational cost and cannot be used in a real-time scenario. This paper applies Compute Unified Device Architecture (CUDA) to speed up the piece-wise autoregressive model image interpolation algorithm for acquiring high-quality SAR images. A partial differential is used to carry out image de-noising. After de-noising, divide the image interpolation based on a local window of a piece-wise autoregressive model: the SAR image is first divided into many 9 × 9 small local windows. For each window, a CUDA thread is launched to interpolate using the autoregressive interpolation algorithm. Gradient descent algorithm is used to estimate parameters of the autoregressive model in the first- and second-round interpolation. Numerical simulation indicates that this GPU-based parallel algorithm can interpolate a 2592 × 1944 image within 1/110th of the time used by a CPU-based serial algorithm. Moreover, the computation time saved increases with the image size. The experimental results show that the method in this paper can achieve high-quality image interpolation in a low computation time." @default.
- W2037286145 created "2016-06-24" @default.
- W2037286145 creator A5031156587 @default.
- W2037286145 creator A5056612547 @default.
- W2037286145 creator A5081440006 @default.
- W2037286145 creator A5084442648 @default.
- W2037286145 date "2014-07-04" @default.
- W2037286145 modified "2023-09-27" @default.
- W2037286145 title "PAR Model SAR Image Interpolation Algorithm on GPU with CUDA" @default.
- W2037286145 cites W2091680418 @default.
- W2037286145 cites W2124378283 @default.
- W2037286145 cites W2128022558 @default.
- W2037286145 cites W2172128189 @default.
- W2037286145 doi "https://doi.org/10.1080/02564602.2014.892736" @default.
- W2037286145 hasPublicationYear "2014" @default.
- W2037286145 type Work @default.
- W2037286145 sameAs 2037286145 @default.
- W2037286145 citedByCount "5" @default.
- W2037286145 countsByYear W20372861452015 @default.
- W2037286145 countsByYear W20372861452016 @default.
- W2037286145 countsByYear W20372861452017 @default.
- W2037286145 countsByYear W20372861452018 @default.
- W2037286145 countsByYear W20372861452020 @default.
- W2037286145 crossrefType "journal-article" @default.
- W2037286145 hasAuthorship W2037286145A5031156587 @default.
- W2037286145 hasAuthorship W2037286145A5056612547 @default.
- W2037286145 hasAuthorship W2037286145A5081440006 @default.
- W2037286145 hasAuthorship W2037286145A5084442648 @default.
- W2037286145 hasConcept C11413529 @default.
- W2037286145 hasConcept C115961682 @default.
- W2037286145 hasConcept C119768884 @default.
- W2037286145 hasConcept C137800194 @default.
- W2037286145 hasConcept C142616399 @default.
- W2037286145 hasConcept C149782125 @default.
- W2037286145 hasConcept C154945302 @default.
- W2037286145 hasConcept C159877910 @default.
- W2037286145 hasConcept C173608175 @default.
- W2037286145 hasConcept C203332170 @default.
- W2037286145 hasConcept C205203396 @default.
- W2037286145 hasConcept C27405340 @default.
- W2037286145 hasConcept C27624317 @default.
- W2037286145 hasConcept C2778119891 @default.
- W2037286145 hasConcept C31972630 @default.
- W2037286145 hasConcept C33923547 @default.
- W2037286145 hasConcept C41008148 @default.
- W2037286145 hasConcept C45374587 @default.
- W2037286145 hasConcept C87360688 @default.
- W2037286145 hasConcept C9417928 @default.
- W2037286145 hasConceptScore W2037286145C11413529 @default.
- W2037286145 hasConceptScore W2037286145C115961682 @default.
- W2037286145 hasConceptScore W2037286145C119768884 @default.
- W2037286145 hasConceptScore W2037286145C137800194 @default.
- W2037286145 hasConceptScore W2037286145C142616399 @default.
- W2037286145 hasConceptScore W2037286145C149782125 @default.
- W2037286145 hasConceptScore W2037286145C154945302 @default.
- W2037286145 hasConceptScore W2037286145C159877910 @default.
- W2037286145 hasConceptScore W2037286145C173608175 @default.
- W2037286145 hasConceptScore W2037286145C203332170 @default.
- W2037286145 hasConceptScore W2037286145C205203396 @default.
- W2037286145 hasConceptScore W2037286145C27405340 @default.
- W2037286145 hasConceptScore W2037286145C27624317 @default.
- W2037286145 hasConceptScore W2037286145C2778119891 @default.
- W2037286145 hasConceptScore W2037286145C31972630 @default.
- W2037286145 hasConceptScore W2037286145C33923547 @default.
- W2037286145 hasConceptScore W2037286145C41008148 @default.
- W2037286145 hasConceptScore W2037286145C45374587 @default.
- W2037286145 hasConceptScore W2037286145C87360688 @default.
- W2037286145 hasConceptScore W2037286145C9417928 @default.
- W2037286145 hasIssue "4" @default.
- W2037286145 hasLocation W20372861451 @default.
- W2037286145 hasOpenAccess W2037286145 @default.
- W2037286145 hasPrimaryLocation W20372861451 @default.
- W2037286145 hasRelatedWork W153371355 @default.
- W2037286145 hasRelatedWork W2121457398 @default.
- W2037286145 hasRelatedWork W2126671250 @default.
- W2037286145 hasRelatedWork W2162140574 @default.
- W2037286145 hasRelatedWork W2350276513 @default.
- W2037286145 hasRelatedWork W2352808182 @default.
- W2037286145 hasRelatedWork W2355602298 @default.
- W2037286145 hasRelatedWork W2361821952 @default.
- W2037286145 hasRelatedWork W3152141443 @default.
- W2037286145 hasRelatedWork W2553003891 @default.
- W2037286145 hasVolume "31" @default.
- W2037286145 isParatext "false" @default.
- W2037286145 isRetracted "false" @default.
- W2037286145 magId "2037286145" @default.
- W2037286145 workType "article" @default.