Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037404507> ?p ?o ?g. }
- W2037404507 endingPage "e69434" @default.
- W2037404507 startingPage "e69434" @default.
- W2037404507 abstract "Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM) by basing on ETM+ remote sensing image. This algorithm is applied to extract various types of lands of the city Da’an in northern China. Two multi-category strategies, namely “one-against-one” and “one-against-rest” for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient), stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC), back propagation neural network (BPN), and the proximal support vector machine (PSVM) under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments." @default.
- W2037404507 created "2016-06-24" @default.
- W2037404507 creator A5010450016 @default.
- W2037404507 creator A5012278873 @default.
- W2037404507 creator A5029672231 @default.
- W2037404507 creator A5045296698 @default.
- W2037404507 creator A5056433365 @default.
- W2037404507 creator A5056734332 @default.
- W2037404507 creator A5060869603 @default.
- W2037404507 creator A5077999325 @default.
- W2037404507 creator A5084355414 @default.
- W2037404507 creator A5087549046 @default.
- W2037404507 date "2013-07-23" @default.
- W2037404507 modified "2023-09-22" @default.
- W2037404507 title "Fuzzy Nonlinear Proximal Support Vector Machine for Land Extraction Based on Remote Sensing Image" @default.
- W2037404507 cites W1984730635 @default.
- W2037404507 cites W1988518729 @default.
- W2037404507 cites W1995686650 @default.
- W2037404507 cites W1997642534 @default.
- W2037404507 cites W2005569959 @default.
- W2037404507 cites W2012079387 @default.
- W2037404507 cites W2033193574 @default.
- W2037404507 cites W2033973976 @default.
- W2037404507 cites W2038590825 @default.
- W2037404507 cites W2047060267 @default.
- W2037404507 cites W2065800647 @default.
- W2037404507 cites W2069231281 @default.
- W2037404507 cites W2078619499 @default.
- W2037404507 cites W2081346329 @default.
- W2037404507 cites W2085831731 @default.
- W2037404507 cites W2087347434 @default.
- W2037404507 cites W2087670708 @default.
- W2037404507 cites W2096059361 @default.
- W2037404507 cites W2098057602 @default.
- W2037404507 cites W2114828048 @default.
- W2037404507 cites W2121069620 @default.
- W2037404507 cites W2125687218 @default.
- W2037404507 cites W2133462743 @default.
- W2037404507 cites W2137155271 @default.
- W2037404507 cites W2138973222 @default.
- W2037404507 cites W2143750468 @default.
- W2037404507 cites W2156909104 @default.
- W2037404507 cites W2158293206 @default.
- W2037404507 cites W2171307033 @default.
- W2037404507 cites W4232222670 @default.
- W2037404507 cites W968282990 @default.
- W2037404507 doi "https://doi.org/10.1371/journal.pone.0069434" @default.
- W2037404507 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3720649" @default.
- W2037404507 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23936016" @default.
- W2037404507 hasPublicationYear "2013" @default.
- W2037404507 type Work @default.
- W2037404507 sameAs 2037404507 @default.
- W2037404507 citedByCount "16" @default.
- W2037404507 countsByYear W20374045072014 @default.
- W2037404507 countsByYear W20374045072015 @default.
- W2037404507 countsByYear W20374045072016 @default.
- W2037404507 countsByYear W20374045072018 @default.
- W2037404507 countsByYear W20374045072019 @default.
- W2037404507 countsByYear W20374045072020 @default.
- W2037404507 countsByYear W20374045072022 @default.
- W2037404507 countsByYear W20374045072023 @default.
- W2037404507 crossrefType "journal-article" @default.
- W2037404507 hasAuthorship W2037404507A5010450016 @default.
- W2037404507 hasAuthorship W2037404507A5012278873 @default.
- W2037404507 hasAuthorship W2037404507A5029672231 @default.
- W2037404507 hasAuthorship W2037404507A5045296698 @default.
- W2037404507 hasAuthorship W2037404507A5056433365 @default.
- W2037404507 hasAuthorship W2037404507A5056734332 @default.
- W2037404507 hasAuthorship W2037404507A5060869603 @default.
- W2037404507 hasAuthorship W2037404507A5077999325 @default.
- W2037404507 hasAuthorship W2037404507A5084355414 @default.
- W2037404507 hasAuthorship W2037404507A5087549046 @default.
- W2037404507 hasBestOaLocation W20374045071 @default.
- W2037404507 hasConcept C115961682 @default.
- W2037404507 hasConcept C119857082 @default.
- W2037404507 hasConcept C12267149 @default.
- W2037404507 hasConcept C124101348 @default.
- W2037404507 hasConcept C148483581 @default.
- W2037404507 hasConcept C153180895 @default.
- W2037404507 hasConcept C154945302 @default.
- W2037404507 hasConcept C163864269 @default.
- W2037404507 hasConcept C41008148 @default.
- W2037404507 hasConcept C50644808 @default.
- W2037404507 hasConcept C52622490 @default.
- W2037404507 hasConcept C58166 @default.
- W2037404507 hasConcept C75294576 @default.
- W2037404507 hasConcept C79337645 @default.
- W2037404507 hasConcept C95623464 @default.
- W2037404507 hasConceptScore W2037404507C115961682 @default.
- W2037404507 hasConceptScore W2037404507C119857082 @default.
- W2037404507 hasConceptScore W2037404507C12267149 @default.
- W2037404507 hasConceptScore W2037404507C124101348 @default.
- W2037404507 hasConceptScore W2037404507C148483581 @default.
- W2037404507 hasConceptScore W2037404507C153180895 @default.
- W2037404507 hasConceptScore W2037404507C154945302 @default.
- W2037404507 hasConceptScore W2037404507C163864269 @default.
- W2037404507 hasConceptScore W2037404507C41008148 @default.
- W2037404507 hasConceptScore W2037404507C50644808 @default.