Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037496690> ?p ?o ?g. }
- W2037496690 endingPage "214" @default.
- W2037496690 startingPage "202" @default.
- W2037496690 abstract "A method for principal component analysis is proposed that is sparse and robust at the same time. The sparsity delivers principal components that have loadings on a small number of variables, making them easier to interpret. The robustness makes the analysis resistant to outlying observations. The principal components correspond to directions that maximize a robust measure of the variance, with an additional penalty term to take sparseness into account. We propose an algorithm to compute the sparse and robust principal components. The algorithm computes the components sequentially, and thus it can handle datasets with more variables than observations. The method is applied on several real data examples, and diagnostic plots for detecting outliers and for selecting the degree of sparsity are provided. A simulation experiment studies the effect on statistical efficiency by requiring both robustness and sparsity. Supplementary materials are available online on the journal web site." @default.
- W2037496690 created "2016-06-24" @default.
- W2037496690 creator A5025083815 @default.
- W2037496690 creator A5041191852 @default.
- W2037496690 creator A5060197624 @default.
- W2037496690 date "2013-05-01" @default.
- W2037496690 modified "2023-10-17" @default.
- W2037496690 title "Robust Sparse Principal Component Analysis" @default.
- W2037496690 cites W1540764732 @default.
- W2037496690 cites W1915008591 @default.
- W2037496690 cites W1968805547 @default.
- W2037496690 cites W1975900269 @default.
- W2037496690 cites W1979486458 @default.
- W2037496690 cites W1979893105 @default.
- W2037496690 cites W1986241547 @default.
- W2037496690 cites W1998409929 @default.
- W2037496690 cites W2027639380 @default.
- W2037496690 cites W2028205093 @default.
- W2037496690 cites W2035820295 @default.
- W2037496690 cites W2043120233 @default.
- W2037496690 cites W2046692379 @default.
- W2037496690 cites W2054834816 @default.
- W2037496690 cites W2055894834 @default.
- W2037496690 cites W2058496912 @default.
- W2037496690 cites W2063016434 @default.
- W2037496690 cites W2085359512 @default.
- W2037496690 cites W2098290597 @default.
- W2037496690 cites W2113600901 @default.
- W2037496690 cites W2120245537 @default.
- W2037496690 cites W2122078122 @default.
- W2037496690 cites W2124449497 @default.
- W2037496690 cites W2128899793 @default.
- W2037496690 cites W2132471283 @default.
- W2037496690 cites W2133097426 @default.
- W2037496690 cites W2140453598 @default.
- W2037496690 cites W2145962650 @default.
- W2037496690 cites W2482053526 @default.
- W2037496690 cites W2492307518 @default.
- W2037496690 cites W3100039232 @default.
- W2037496690 cites W3101710089 @default.
- W2037496690 cites W3123841035 @default.
- W2037496690 cites W3124370832 @default.
- W2037496690 cites W4229530126 @default.
- W2037496690 cites W4362131110 @default.
- W2037496690 doi "https://doi.org/10.1080/00401706.2012.727746" @default.
- W2037496690 hasPublicationYear "2013" @default.
- W2037496690 type Work @default.
- W2037496690 sameAs 2037496690 @default.
- W2037496690 citedByCount "85" @default.
- W2037496690 countsByYear W20374966902012 @default.
- W2037496690 countsByYear W20374966902013 @default.
- W2037496690 countsByYear W20374966902014 @default.
- W2037496690 countsByYear W20374966902015 @default.
- W2037496690 countsByYear W20374966902016 @default.
- W2037496690 countsByYear W20374966902017 @default.
- W2037496690 countsByYear W20374966902018 @default.
- W2037496690 countsByYear W20374966902019 @default.
- W2037496690 countsByYear W20374966902020 @default.
- W2037496690 countsByYear W20374966902021 @default.
- W2037496690 countsByYear W20374966902022 @default.
- W2037496690 countsByYear W20374966902023 @default.
- W2037496690 crossrefType "journal-article" @default.
- W2037496690 hasAuthorship W2037496690A5025083815 @default.
- W2037496690 hasAuthorship W2037496690A5041191852 @default.
- W2037496690 hasAuthorship W2037496690A5060197624 @default.
- W2037496690 hasBestOaLocation W20374966902 @default.
- W2037496690 hasConcept C104317684 @default.
- W2037496690 hasConcept C11413529 @default.
- W2037496690 hasConcept C121955636 @default.
- W2037496690 hasConcept C124101348 @default.
- W2037496690 hasConcept C144133560 @default.
- W2037496690 hasConcept C153180895 @default.
- W2037496690 hasConcept C154945302 @default.
- W2037496690 hasConcept C185592680 @default.
- W2037496690 hasConcept C196083921 @default.
- W2037496690 hasConcept C24252448 @default.
- W2037496690 hasConcept C27438332 @default.
- W2037496690 hasConcept C2777749129 @default.
- W2037496690 hasConcept C2780009758 @default.
- W2037496690 hasConcept C33923547 @default.
- W2037496690 hasConcept C41008148 @default.
- W2037496690 hasConcept C55493867 @default.
- W2037496690 hasConcept C63479239 @default.
- W2037496690 hasConcept C67226441 @default.
- W2037496690 hasConcept C79337645 @default.
- W2037496690 hasConceptScore W2037496690C104317684 @default.
- W2037496690 hasConceptScore W2037496690C11413529 @default.
- W2037496690 hasConceptScore W2037496690C121955636 @default.
- W2037496690 hasConceptScore W2037496690C124101348 @default.
- W2037496690 hasConceptScore W2037496690C144133560 @default.
- W2037496690 hasConceptScore W2037496690C153180895 @default.
- W2037496690 hasConceptScore W2037496690C154945302 @default.
- W2037496690 hasConceptScore W2037496690C185592680 @default.
- W2037496690 hasConceptScore W2037496690C196083921 @default.
- W2037496690 hasConceptScore W2037496690C24252448 @default.
- W2037496690 hasConceptScore W2037496690C27438332 @default.
- W2037496690 hasConceptScore W2037496690C2777749129 @default.
- W2037496690 hasConceptScore W2037496690C2780009758 @default.