Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037624308> ?p ?o ?g. }
- W2037624308 endingPage "160" @default.
- W2037624308 startingPage "144" @default.
- W2037624308 abstract "We present a hybrid global–local optimization algorithm for parameter estimation of radial basis function (RBF) networks and the RBF-type autoregressive models without exogenous inputs (RBF-AR) or with exogenous inputs (RBF-ARX). The RBF-AR (X) models are quasi-linear time-varying AR (X) models with Gaussian RBF network-style coefficients, which have been used to effectively model the nonlinear behavior of various complex systems. However, the identification of these models is a difficult optimization problem because of the large number of local minima. A hybrid approach is proposed in this paper to achieve better optimization results for these RBF-type models. The applied hybrid search strategy (EA-SNPOM) is developed by combining an evolutionary algorithm (EA) with a gradient-based algorithm known as the structured nonlinear parameter optimization method (SNPOM). This strategy makes use of the robustness of the EA to cover an entire global search space and the efficiency of the gradient search to converge to a local optimum. Several examples of time series modeling and system identification are presented. The simulation results indicate that the performance of the proposed hybrid approach is better than the performance obtained from using each method (EA or SNPOM) alone. Furthermore, the RBF-AR (X) models estimated by the EA-SNPOM achieve much better modeling accuracy relative to other neural networks or fuzzy models in the simulations." @default.
- W2037624308 created "2016-06-24" @default.
- W2037624308 creator A5009702637 @default.
- W2037624308 creator A5047001937 @default.
- W2037624308 creator A5056860005 @default.
- W2037624308 date "2012-08-01" @default.
- W2037624308 modified "2023-09-27" @default.
- W2037624308 title "A global–local optimization approach to parameter estimation of RBF-type models" @default.
- W2037624308 cites W1972948535 @default.
- W2037624308 cites W1978201800 @default.
- W2037624308 cites W1980418485 @default.
- W2037624308 cites W1980770037 @default.
- W2037624308 cites W1982107291 @default.
- W2037624308 cites W1988146751 @default.
- W2037624308 cites W1995234002 @default.
- W2037624308 cites W1999933124 @default.
- W2037624308 cites W2005369724 @default.
- W2037624308 cites W2007789460 @default.
- W2037624308 cites W2010250436 @default.
- W2037624308 cites W2028725248 @default.
- W2037624308 cites W2029955511 @default.
- W2037624308 cites W2031768652 @default.
- W2037624308 cites W2031852278 @default.
- W2037624308 cites W2033532682 @default.
- W2037624308 cites W2040198354 @default.
- W2037624308 cites W2040604977 @default.
- W2037624308 cites W2053143856 @default.
- W2037624308 cites W2058271794 @default.
- W2037624308 cites W2074221952 @default.
- W2037624308 cites W2078094465 @default.
- W2037624308 cites W2084171026 @default.
- W2037624308 cites W2087017943 @default.
- W2037624308 cites W2087070363 @default.
- W2037624308 cites W2097340162 @default.
- W2037624308 cites W2098392363 @default.
- W2037624308 cites W2101791369 @default.
- W2037624308 cites W2109788599 @default.
- W2037624308 cites W2113771037 @default.
- W2037624308 cites W2127510298 @default.
- W2037624308 cites W2131613989 @default.
- W2037624308 cites W2132632244 @default.
- W2037624308 cites W2136772527 @default.
- W2037624308 cites W2138623253 @default.
- W2037624308 cites W2138661420 @default.
- W2037624308 cites W2140910585 @default.
- W2037624308 cites W2142635246 @default.
- W2037624308 cites W2143318315 @default.
- W2037624308 cites W2144346127 @default.
- W2037624308 cites W2144847945 @default.
- W2037624308 cites W2145178363 @default.
- W2037624308 cites W2147684166 @default.
- W2037624308 cites W2150781240 @default.
- W2037624308 cites W2155399784 @default.
- W2037624308 cites W2156019969 @default.
- W2037624308 cites W2156194072 @default.
- W2037624308 cites W2159265133 @default.
- W2037624308 cites W2160664614 @default.
- W2037624308 cites W2162704809 @default.
- W2037624308 cites W2171277043 @default.
- W2037624308 cites W4251846825 @default.
- W2037624308 doi "https://doi.org/10.1016/j.ins.2012.01.039" @default.
- W2037624308 hasPublicationYear "2012" @default.
- W2037624308 type Work @default.
- W2037624308 sameAs 2037624308 @default.
- W2037624308 citedByCount "27" @default.
- W2037624308 countsByYear W20376243082013 @default.
- W2037624308 countsByYear W20376243082014 @default.
- W2037624308 countsByYear W20376243082015 @default.
- W2037624308 countsByYear W20376243082016 @default.
- W2037624308 countsByYear W20376243082017 @default.
- W2037624308 countsByYear W20376243082018 @default.
- W2037624308 countsByYear W20376243082019 @default.
- W2037624308 countsByYear W20376243082020 @default.
- W2037624308 countsByYear W20376243082021 @default.
- W2037624308 countsByYear W20376243082022 @default.
- W2037624308 crossrefType "journal-article" @default.
- W2037624308 hasAuthorship W2037624308A5009702637 @default.
- W2037624308 hasAuthorship W2037624308A5047001937 @default.
- W2037624308 hasAuthorship W2037624308A5056860005 @default.
- W2037624308 hasConcept C104317684 @default.
- W2037624308 hasConcept C105795698 @default.
- W2037624308 hasConcept C11413529 @default.
- W2037624308 hasConcept C119247159 @default.
- W2037624308 hasConcept C121332964 @default.
- W2037624308 hasConcept C126255220 @default.
- W2037624308 hasConcept C134306372 @default.
- W2037624308 hasConcept C154945302 @default.
- W2037624308 hasConcept C158622935 @default.
- W2037624308 hasConcept C159877910 @default.
- W2037624308 hasConcept C185592680 @default.
- W2037624308 hasConcept C186633575 @default.
- W2037624308 hasConcept C22157029 @default.
- W2037624308 hasConcept C33923547 @default.
- W2037624308 hasConcept C41008148 @default.
- W2037624308 hasConcept C50644808 @default.
- W2037624308 hasConcept C55493867 @default.
- W2037624308 hasConcept C62520636 @default.
- W2037624308 hasConcept C63479239 @default.