Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037679672> ?p ?o ?g. }
- W2037679672 abstract "Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study." @default.
- W2037679672 created "2016-06-24" @default.
- W2037679672 creator A5043315785 @default.
- W2037679672 creator A5044366692 @default.
- W2037679672 creator A5074861019 @default.
- W2037679672 creator A5075672280 @default.
- W2037679672 creator A5075993058 @default.
- W2037679672 creator A5087862725 @default.
- W2037679672 creator A5089475669 @default.
- W2037679672 date "2010-01-05" @default.
- W2037679672 modified "2023-10-07" @default.
- W2037679672 title "A novel approach to simulate gene-environment interactions in complex diseases" @default.
- W2037679672 cites W1967360667 @default.
- W2037679672 cites W1967668456 @default.
- W2037679672 cites W1977945634 @default.
- W2037679672 cites W1998977949 @default.
- W2037679672 cites W1999377301 @default.
- W2037679672 cites W2005479477 @default.
- W2037679672 cites W2025653953 @default.
- W2037679672 cites W2029101308 @default.
- W2037679672 cites W2041024744 @default.
- W2037679672 cites W2065435420 @default.
- W2037679672 cites W2079958890 @default.
- W2037679672 cites W2098979053 @default.
- W2037679672 cites W2099172634 @default.
- W2037679672 cites W2103093164 @default.
- W2037679672 cites W2110206253 @default.
- W2037679672 cites W2115165162 @default.
- W2037679672 cites W2125272280 @default.
- W2037679672 cites W2131878646 @default.
- W2037679672 cites W2134783591 @default.
- W2037679672 cites W2148981095 @default.
- W2037679672 cites W2154572047 @default.
- W2037679672 cites W2334316724 @default.
- W2037679672 cites W4299689471 @default.
- W2037679672 doi "https://doi.org/10.1186/1471-2105-11-8" @default.
- W2037679672 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2824681" @default.
- W2037679672 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20051127" @default.
- W2037679672 hasPublicationYear "2010" @default.
- W2037679672 type Work @default.
- W2037679672 sameAs 2037679672 @default.
- W2037679672 citedByCount "24" @default.
- W2037679672 countsByYear W20376796722012 @default.
- W2037679672 countsByYear W20376796722013 @default.
- W2037679672 countsByYear W20376796722014 @default.
- W2037679672 countsByYear W20376796722015 @default.
- W2037679672 countsByYear W20376796722017 @default.
- W2037679672 countsByYear W20376796722020 @default.
- W2037679672 countsByYear W20376796722021 @default.
- W2037679672 crossrefType "journal-article" @default.
- W2037679672 hasAuthorship W2037679672A5043315785 @default.
- W2037679672 hasAuthorship W2037679672A5044366692 @default.
- W2037679672 hasAuthorship W2037679672A5074861019 @default.
- W2037679672 hasAuthorship W2037679672A5075672280 @default.
- W2037679672 hasAuthorship W2037679672A5075993058 @default.
- W2037679672 hasAuthorship W2037679672A5087862725 @default.
- W2037679672 hasAuthorship W2037679672A5089475669 @default.
- W2037679672 hasBestOaLocation W20376796721 @default.
- W2037679672 hasConcept C104317684 @default.
- W2037679672 hasConcept C112930515 @default.
- W2037679672 hasConcept C119857082 @default.
- W2037679672 hasConcept C124101348 @default.
- W2037679672 hasConcept C130947863 @default.
- W2037679672 hasConcept C135763542 @default.
- W2037679672 hasConcept C2908647359 @default.
- W2037679672 hasConcept C2991772755 @default.
- W2037679672 hasConcept C41008148 @default.
- W2037679672 hasConcept C54355233 @default.
- W2037679672 hasConcept C61727976 @default.
- W2037679672 hasConcept C71924100 @default.
- W2037679672 hasConcept C86803240 @default.
- W2037679672 hasConcept C99454951 @default.
- W2037679672 hasConceptScore W2037679672C104317684 @default.
- W2037679672 hasConceptScore W2037679672C112930515 @default.
- W2037679672 hasConceptScore W2037679672C119857082 @default.
- W2037679672 hasConceptScore W2037679672C124101348 @default.
- W2037679672 hasConceptScore W2037679672C130947863 @default.
- W2037679672 hasConceptScore W2037679672C135763542 @default.
- W2037679672 hasConceptScore W2037679672C2908647359 @default.
- W2037679672 hasConceptScore W2037679672C2991772755 @default.
- W2037679672 hasConceptScore W2037679672C41008148 @default.
- W2037679672 hasConceptScore W2037679672C54355233 @default.
- W2037679672 hasConceptScore W2037679672C61727976 @default.
- W2037679672 hasConceptScore W2037679672C71924100 @default.
- W2037679672 hasConceptScore W2037679672C86803240 @default.
- W2037679672 hasConceptScore W2037679672C99454951 @default.
- W2037679672 hasIssue "1" @default.
- W2037679672 hasLocation W20376796721 @default.
- W2037679672 hasLocation W20376796722 @default.
- W2037679672 hasLocation W20376796723 @default.
- W2037679672 hasLocation W20376796724 @default.
- W2037679672 hasLocation W20376796725 @default.
- W2037679672 hasLocation W20376796726 @default.
- W2037679672 hasLocation W20376796727 @default.
- W2037679672 hasOpenAccess W2037679672 @default.
- W2037679672 hasPrimaryLocation W20376796721 @default.
- W2037679672 hasRelatedWork W2031302781 @default.
- W2037679672 hasRelatedWork W2045593579 @default.
- W2037679672 hasRelatedWork W2118813583 @default.
- W2037679672 hasRelatedWork W2161212139 @default.