Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037701101> ?p ?o ?g. }
- W2037701101 endingPage "213" @default.
- W2037701101 startingPage "202" @default.
- W2037701101 abstract "Diffusion weighted imaging (DWI) is used to study white-matter fibre organisation, orientation and structural connectivity by means of fibre reconstruction algorithms and tractography. For clinical settings, limited scan time compromises the possibilities to achieve high image resolution for finer anatomical details and signal-to-noise-ratio for reliable fibre reconstruction. We assessed the potential benefits of interpolating DWI datasets to a higher image resolution before fibre reconstruction using a diffusion tensor model. Simulations of straight and curved crossing tracts smaller than or equal to the voxel size showed that conventional higher-order interpolation methods improved the geometrical representation of white-matter tracts with reduced partial-volume-effect (PVE), except at tract boundaries. Simulations and interpolation of ex-vivo monkey brain DWI datasets revealed that conventional interpolation methods fail to disentangle fine anatomical details if PVE is too pronounced in the original data. As for validation we used ex-vivo DWI datasets acquired at various image resolutions as well as Nissl-stained sections. Increasing the image resolution by a factor of eight yielded finer geometrical resolution and more anatomical details in complex regions such as tract boundaries and cortical layers, which are normally only visualized at higher image resolutions. Similar results were found with typical clinical human DWI dataset. However, a possible bias in quantitative values imposed by the interpolation method used should be considered. The results indicate that conventional interpolation methods can be successfully applied to DWI datasets for mining anatomical details that are normally seen only at higher resolutions, which will aid in tractography and microstructural mapping of tissue compartments." @default.
- W2037701101 created "2016-06-24" @default.
- W2037701101 creator A5002139917 @default.
- W2037701101 creator A5017949231 @default.
- W2037701101 creator A5019994365 @default.
- W2037701101 creator A5024917674 @default.
- W2037701101 creator A5048696924 @default.
- W2037701101 creator A5049536373 @default.
- W2037701101 creator A5078697598 @default.
- W2037701101 date "2014-12-01" @default.
- W2037701101 modified "2023-10-01" @default.
- W2037701101 title "Interpolation of diffusion weighted imaging datasets" @default.
- W2037701101 cites W1503242095 @default.
- W2037701101 cites W1964802316 @default.
- W2037701101 cites W1973397887 @default.
- W2037701101 cites W1975017507 @default.
- W2037701101 cites W1979310540 @default.
- W2037701101 cites W1979325788 @default.
- W2037701101 cites W1984453610 @default.
- W2037701101 cites W1994383327 @default.
- W2037701101 cites W2000789223 @default.
- W2037701101 cites W2006096283 @default.
- W2037701101 cites W2015096393 @default.
- W2037701101 cites W2032254014 @default.
- W2037701101 cites W2041765815 @default.
- W2037701101 cites W2045859570 @default.
- W2037701101 cites W2046933782 @default.
- W2037701101 cites W2048192550 @default.
- W2037701101 cites W2052288235 @default.
- W2037701101 cites W2056189002 @default.
- W2037701101 cites W2059784307 @default.
- W2037701101 cites W2067560632 @default.
- W2037701101 cites W2070464891 @default.
- W2037701101 cites W2108243930 @default.
- W2037701101 cites W2113524221 @default.
- W2037701101 cites W2114809469 @default.
- W2037701101 cites W2126255160 @default.
- W2037701101 cites W2142059961 @default.
- W2037701101 cites W2142900310 @default.
- W2037701101 cites W2149337534 @default.
- W2037701101 cites W2150528304 @default.
- W2037701101 cites W2168844688 @default.
- W2037701101 cites W4248533749 @default.
- W2037701101 doi "https://doi.org/10.1016/j.neuroimage.2014.09.005" @default.
- W2037701101 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25219332" @default.
- W2037701101 hasPublicationYear "2014" @default.
- W2037701101 type Work @default.
- W2037701101 sameAs 2037701101 @default.
- W2037701101 citedByCount "106" @default.
- W2037701101 countsByYear W20377011012015 @default.
- W2037701101 countsByYear W20377011012016 @default.
- W2037701101 countsByYear W20377011012017 @default.
- W2037701101 countsByYear W20377011012018 @default.
- W2037701101 countsByYear W20377011012019 @default.
- W2037701101 countsByYear W20377011012020 @default.
- W2037701101 countsByYear W20377011012021 @default.
- W2037701101 countsByYear W20377011012022 @default.
- W2037701101 countsByYear W20377011012023 @default.
- W2037701101 crossrefType "journal-article" @default.
- W2037701101 hasAuthorship W2037701101A5002139917 @default.
- W2037701101 hasAuthorship W2037701101A5017949231 @default.
- W2037701101 hasAuthorship W2037701101A5019994365 @default.
- W2037701101 hasAuthorship W2037701101A5024917674 @default.
- W2037701101 hasAuthorship W2037701101A5048696924 @default.
- W2037701101 hasAuthorship W2037701101A5049536373 @default.
- W2037701101 hasAuthorship W2037701101A5078697598 @default.
- W2037701101 hasBestOaLocation W20377011011 @default.
- W2037701101 hasConcept C115961682 @default.
- W2037701101 hasConcept C126838900 @default.
- W2037701101 hasConcept C137800194 @default.
- W2037701101 hasConcept C143409427 @default.
- W2037701101 hasConcept C149550507 @default.
- W2037701101 hasConcept C153180895 @default.
- W2037701101 hasConcept C154945302 @default.
- W2037701101 hasConcept C16345878 @default.
- W2037701101 hasConcept C171836373 @default.
- W2037701101 hasConcept C205372480 @default.
- W2037701101 hasConcept C2524010 @default.
- W2037701101 hasConcept C31972630 @default.
- W2037701101 hasConcept C33923547 @default.
- W2037701101 hasConcept C41008148 @default.
- W2037701101 hasConcept C49608258 @default.
- W2037701101 hasConcept C54170458 @default.
- W2037701101 hasConcept C71924100 @default.
- W2037701101 hasConcept C84787856 @default.
- W2037701101 hasConceptScore W2037701101C115961682 @default.
- W2037701101 hasConceptScore W2037701101C126838900 @default.
- W2037701101 hasConceptScore W2037701101C137800194 @default.
- W2037701101 hasConceptScore W2037701101C143409427 @default.
- W2037701101 hasConceptScore W2037701101C149550507 @default.
- W2037701101 hasConceptScore W2037701101C153180895 @default.
- W2037701101 hasConceptScore W2037701101C154945302 @default.
- W2037701101 hasConceptScore W2037701101C16345878 @default.
- W2037701101 hasConceptScore W2037701101C171836373 @default.
- W2037701101 hasConceptScore W2037701101C205372480 @default.
- W2037701101 hasConceptScore W2037701101C2524010 @default.
- W2037701101 hasConceptScore W2037701101C31972630 @default.
- W2037701101 hasConceptScore W2037701101C33923547 @default.