Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037740528> ?p ?o ?g. }
- W2037740528 endingPage "447" @default.
- W2037740528 startingPage "434" @default.
- W2037740528 abstract "A powerful and flexible method for fitting dynamic models to missing and censored data is to use the Bayesian paradigm via data-augmented Markov chain Monte Carlo (DA-MCMC). This samples from the joint posterior for the parameters and missing data, but requires high memory overheads for large-scale systems. In addition, designing efficient proposal distributions for the missing data is typically challenging. Pseudo-marginal methods instead integrate across the missing data using a Monte Carlo estimate for the likelihood, generated from multiple independent simulations from the model. These techniques can avoid the high memory requirements of DA-MCMC, and under certain conditions produce the exact marginal posterior distribution for parameters. A novel method is presented for implementing importance sampling for dynamic epidemic models, by conditioning the simulations on sets of validity criteria (based on the model structure) as well as the observed data. The flexibility of these techniques is illustrated using both removal time and final size data from an outbreak of smallpox. It is shown that these approaches can circumvent the need for reversible-jump MCMC, and can allow inference in situations where DA-MCMC is impossible due to computationally infeasible likelihoods." @default.
- W2037740528 created "2016-06-24" @default.
- W2037740528 creator A5026776788 @default.
- W2037740528 creator A5028898834 @default.
- W2037740528 creator A5041581513 @default.
- W2037740528 creator A5090573013 @default.
- W2037740528 date "2014-03-01" @default.
- W2037740528 modified "2023-10-14" @default.
- W2037740528 title "Simulation-based Bayesian inference for epidemic models" @default.
- W2037740528 cites W114923250 @default.
- W2037740528 cites W1483307070 @default.
- W2037740528 cites W1501586228 @default.
- W2037740528 cites W1522095428 @default.
- W2037740528 cites W1594863551 @default.
- W2037740528 cites W1793259860 @default.
- W2037740528 cites W1830883013 @default.
- W2037740528 cites W1902600646 @default.
- W2037740528 cites W1968469635 @default.
- W2037740528 cites W1973099219 @default.
- W2037740528 cites W1979969656 @default.
- W2037740528 cites W1984430808 @default.
- W2037740528 cites W1994530458 @default.
- W2037740528 cites W1995780830 @default.
- W2037740528 cites W2026033748 @default.
- W2037740528 cites W2032460042 @default.
- W2037740528 cites W2045973738 @default.
- W2037740528 cites W2047978125 @default.
- W2037740528 cites W2051129785 @default.
- W2037740528 cites W2056760934 @default.
- W2037740528 cites W2057003005 @default.
- W2037740528 cites W2065266611 @default.
- W2037740528 cites W2067392831 @default.
- W2037740528 cites W2069408560 @default.
- W2037740528 cites W2075629176 @default.
- W2037740528 cites W2076034016 @default.
- W2037740528 cites W2079779136 @default.
- W2037740528 cites W2079848860 @default.
- W2037740528 cites W2080144446 @default.
- W2037740528 cites W2091196235 @default.
- W2037740528 cites W2091860746 @default.
- W2037740528 cites W2101483181 @default.
- W2037740528 cites W2102694845 @default.
- W2037740528 cites W2106706098 @default.
- W2037740528 cites W2116416291 @default.
- W2037740528 cites W2117005850 @default.
- W2037740528 cites W2118095439 @default.
- W2037740528 cites W2119813768 @default.
- W2037740528 cites W2132192754 @default.
- W2037740528 cites W2135823311 @default.
- W2037740528 cites W2138309709 @default.
- W2037740528 cites W2147039730 @default.
- W2037740528 cites W2149455494 @default.
- W2037740528 cites W2151729750 @default.
- W2037740528 cites W2152246075 @default.
- W2037740528 cites W2155303616 @default.
- W2037740528 cites W2155418451 @default.
- W2037740528 cites W2167922635 @default.
- W2037740528 cites W2334320156 @default.
- W2037740528 cites W2417686394 @default.
- W2037740528 doi "https://doi.org/10.1016/j.csda.2012.12.012" @default.
- W2037740528 hasPublicationYear "2014" @default.
- W2037740528 type Work @default.
- W2037740528 sameAs 2037740528 @default.
- W2037740528 citedByCount "66" @default.
- W2037740528 countsByYear W20377405282014 @default.
- W2037740528 countsByYear W20377405282015 @default.
- W2037740528 countsByYear W20377405282016 @default.
- W2037740528 countsByYear W20377405282017 @default.
- W2037740528 countsByYear W20377405282018 @default.
- W2037740528 countsByYear W20377405282019 @default.
- W2037740528 countsByYear W20377405282020 @default.
- W2037740528 countsByYear W20377405282021 @default.
- W2037740528 countsByYear W20377405282022 @default.
- W2037740528 countsByYear W20377405282023 @default.
- W2037740528 crossrefType "journal-article" @default.
- W2037740528 hasAuthorship W2037740528A5026776788 @default.
- W2037740528 hasAuthorship W2037740528A5028898834 @default.
- W2037740528 hasAuthorship W2037740528A5041581513 @default.
- W2037740528 hasAuthorship W2037740528A5090573013 @default.
- W2037740528 hasBestOaLocation W20377405282 @default.
- W2037740528 hasConcept C105795698 @default.
- W2037740528 hasConcept C106131492 @default.
- W2037740528 hasConcept C107673813 @default.
- W2037740528 hasConcept C111350023 @default.
- W2037740528 hasConcept C11413529 @default.
- W2037740528 hasConcept C119857082 @default.
- W2037740528 hasConcept C124101348 @default.
- W2037740528 hasConcept C140779682 @default.
- W2037740528 hasConcept C154945302 @default.
- W2037740528 hasConcept C160234255 @default.
- W2037740528 hasConcept C19499675 @default.
- W2037740528 hasConcept C2776214188 @default.
- W2037740528 hasConcept C2780591659 @default.
- W2037740528 hasConcept C31972630 @default.
- W2037740528 hasConcept C33923547 @default.
- W2037740528 hasConcept C41008148 @default.
- W2037740528 hasConcept C57830394 @default.
- W2037740528 hasConcept C9357733 @default.