Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037759327> ?p ?o ?g. }
- W2037759327 endingPage "841" @default.
- W2037759327 startingPage "815" @default.
- W2037759327 abstract "Our laboratory has previously reported the chiral transition of DNA minicircle-reconstituted tetrasomes (the particles made of DNA wrapped around the histone (H3-H4)2 tetramer). This transition was induced by DNA positive torsional constraint, generated either by initial supercoiling of the loop or by its thermal fluctuations during topoisomerase relaxation. Taking into account the wrapping of the DNA around the histones into less than a turn, and its negative crossing at the entry-exit, the transition was proposed to involve a 360 ° rotation of the loop around the particle dyad axis, and the formation of a positive crossing. The tetramer horseshoe-shaped conformation within the octamer further suggested that this process could be mediated by a reorientation of the two sector-like H3-H4 dimers about their H3/H3 interface, which would switch the overall handedness of the proteinaceous superhelix from left to right-handed. We now provide additional evidence for such a contribution of the protein by showing, through gel electrophoresis, topoisomerase relaxation and electron microscopy, that a sterical hindrance at the H3/H3 interface, introduced by covalent linking of bulky adducts through thiol oxidation of H3 cysteine 110, interferes with the transition. Such interference varies, depending on the particular SH-reagent used; but the most remarkable effect was obtained with 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB), which displaces the preferred conformation of the tetrasomes from left-handed to semi-right-handed, and at the same time preserves a significant degree of chiral flexibility. DNA contribution was evidenced by a specific fractionation of circular tetrasomes in gel electrophoresis which, together with a different positioning of control and DTNB tetrasomes on linear DNA, pointed to an interdependence between tetrasome conformation and positions. Moreover, linear tetrasomes fluctuate between crossed and uncrossed conformations in a salt-dependent equilibrium which appears to vary with their positions on the DNA. These data suggest a modulatable role of the DNA around the dyad in the transition, depending primarily on its sequence-dependent deformability. This role is played at both levels of H3-H4 dimer reorientation and lateral opening, a mechanism by which the particle may relieve the clash between its entering and exiting DNAs. These properties make the tetrasome an attractive potential intermediate in nucleosome dynamics in vivo, in particular duringX transcriptional activation and elongation." @default.
- W2037759327 created "2016-06-24" @default.
- W2037759327 creator A5009605202 @default.
- W2037759327 creator A5047888055 @default.
- W2037759327 creator A5065630796 @default.
- W2037759327 creator A5075678418 @default.
- W2037759327 date "1999-08-01" @default.
- W2037759327 modified "2023-10-03" @default.
- W2037759327 title "Nucleosome dynamics IV. protein and DNA contributions in the chiral transition of the tetrasome, the histone (H3-H4)2 tetramer-DNA particle" @default.
- W2037759327 cites W143354130 @default.
- W2037759327 cites W1479884475 @default.
- W2037759327 cites W1494498965 @default.
- W2037759327 cites W1503127916 @default.
- W2037759327 cites W1506277265 @default.
- W2037759327 cites W1541382660 @default.
- W2037759327 cites W1558516755 @default.
- W2037759327 cites W1573199447 @default.
- W2037759327 cites W1573313908 @default.
- W2037759327 cites W1598330186 @default.
- W2037759327 cites W1963883826 @default.
- W2037759327 cites W1963912949 @default.
- W2037759327 cites W1965257259 @default.
- W2037759327 cites W1965469784 @default.
- W2037759327 cites W1970601901 @default.
- W2037759327 cites W1973798439 @default.
- W2037759327 cites W1975557047 @default.
- W2037759327 cites W1981397859 @default.
- W2037759327 cites W1994380035 @default.
- W2037759327 cites W1998220537 @default.
- W2037759327 cites W1999141348 @default.
- W2037759327 cites W2000595327 @default.
- W2037759327 cites W2004084057 @default.
- W2037759327 cites W2005971778 @default.
- W2037759327 cites W2010048885 @default.
- W2037759327 cites W2021005121 @default.
- W2037759327 cites W2022714183 @default.
- W2037759327 cites W2024097224 @default.
- W2037759327 cites W2024214216 @default.
- W2037759327 cites W2024337548 @default.
- W2037759327 cites W2029635623 @default.
- W2037759327 cites W2029998234 @default.
- W2037759327 cites W2031073218 @default.
- W2037759327 cites W2031123552 @default.
- W2037759327 cites W2036058906 @default.
- W2037759327 cites W2038645974 @default.
- W2037759327 cites W2038874225 @default.
- W2037759327 cites W2041336616 @default.
- W2037759327 cites W2045759322 @default.
- W2037759327 cites W2049722408 @default.
- W2037759327 cites W2053420149 @default.
- W2037759327 cites W2058940094 @default.
- W2037759327 cites W2060642441 @default.
- W2037759327 cites W2063399689 @default.
- W2037759327 cites W2064429646 @default.
- W2037759327 cites W2071908010 @default.
- W2037759327 cites W2075466548 @default.
- W2037759327 cites W2076352302 @default.
- W2037759327 cites W2079797742 @default.
- W2037759327 cites W2083369623 @default.
- W2037759327 cites W2088552430 @default.
- W2037759327 cites W2091031681 @default.
- W2037759327 cites W2095994064 @default.
- W2037759327 cites W2106257666 @default.
- W2037759327 cites W2106630965 @default.
- W2037759327 cites W2108337315 @default.
- W2037759327 cites W2130217132 @default.
- W2037759327 cites W2132440338 @default.
- W2037759327 cites W2144792857 @default.
- W2037759327 cites W2154779398 @default.
- W2037759327 cites W2170753025 @default.
- W2037759327 cites W2016794334 @default.
- W2037759327 doi "https://doi.org/10.1006/jmbi.1999.2988" @default.
- W2037759327 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10452891" @default.
- W2037759327 hasPublicationYear "1999" @default.
- W2037759327 type Work @default.
- W2037759327 sameAs 2037759327 @default.
- W2037759327 citedByCount "61" @default.
- W2037759327 countsByYear W20377593272012 @default.
- W2037759327 countsByYear W20377593272013 @default.
- W2037759327 countsByYear W20377593272015 @default.
- W2037759327 countsByYear W20377593272016 @default.
- W2037759327 countsByYear W20377593272017 @default.
- W2037759327 countsByYear W20377593272018 @default.
- W2037759327 countsByYear W20377593272019 @default.
- W2037759327 countsByYear W20377593272020 @default.
- W2037759327 countsByYear W20377593272021 @default.
- W2037759327 countsByYear W20377593272023 @default.
- W2037759327 crossrefType "journal-article" @default.
- W2037759327 hasAuthorship W2037759327A5009605202 @default.
- W2037759327 hasAuthorship W2037759327A5047888055 @default.
- W2037759327 hasAuthorship W2037759327A5065630796 @default.
- W2037759327 hasAuthorship W2037759327A5075678418 @default.
- W2037759327 hasConcept C12554922 @default.
- W2037759327 hasConcept C147897179 @default.
- W2037759327 hasConcept C158456008 @default.
- W2037759327 hasConcept C172455284 @default.
- W2037759327 hasConcept C173681060 @default.
- W2037759327 hasConcept C181199279 @default.