Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037819914> ?p ?o ?g. }
- W2037819914 endingPage "567" @default.
- W2037819914 startingPage "542" @default.
- W2037819914 abstract "A stereo algorithm is presented that optimizes a maximum likelihood cost function. The maximum likelihood cost function assumes that corresponding features in the left and right images are normally distributed about a common true value and consists of a weighted squared error term if two features are matched or a (fixed) cost if a feature is determined to be occluded. The stereo algorithm finds the set of correspondences that maximize the cost function subject to ordering and uniqueness constraints. The stereo algorithm is independent of the matching primitives. However, for the experiments described in this paper, matching is performed on the $cf4$individual pixel intensities.$cf3$ Contrary to popular belief, the pixel-based stereo appears to be robust for a variety of images. It also has the advantages of (i) providing adensedisparity map, (ii) requiringnofeature extraction, and (iii)avoidingthe adaptive windowing problem of area-based correlation methods. Because feature extraction and windowing are unnecessary, a very fast implementation is possible. Experimental results reveal that good stereo correspondences can be found using only ordering and uniqueness constraints, i.e., withoutlocalsmoothness constraints. However, it is shown that the original maximum likelihood stereo algorithm exhibits multiple global minima. The dynamic programming algorithm is guaranteed to find one, but not necessarily the same one for each epipolar scanline, causing erroneous correspondences which are visible as small local differences between neighboring scanlines. Traditionally, regularization, which modifies the original cost function, has been applied to the problem of multiple global minima. We developed several variants of the algorithm that avoid classical regularization while imposing several global cohesiveness constraints. We believe this is a novel approach that has the advantage of guaranteeing that solutions minimize the original cost function and preserve discontinuities. The constraints are based on minimizing the total number of horizontal and/or vertical discontinuities along and/or between adjacent epipolar lines, and local smoothing is avoided. Experiments reveal that minimizing the sum of the horizontal and vertical discontinuities provides the most accurate results. A high percentage of correct matches and very little smearing of depth discontinuities are obtained. An alternative to imposing cohesiveness constraints to reduce the correspondence ambiguities is to use more than two cameras. We therefore extend the two camera maximum likelihood toNcameras. TheN-camera stereo algorithm determines the “best” set of correspondences between a given pair of cameras, referred to as the principal cameras. Knowledge of the relative positions of the cameras allows the 3D point hypothesized by an assumed correspondence of two features in the principal pair to be projected onto the image plane of the remainingN− 2 cameras. TheseN− 2 points are then used to verify proposed matches. Not only does the algorithm explicitly model occlusion between features of the principal pair, but the possibility of occlusions in theN− 2 additional views is also modeled. Previous work did not model this occlusion process, the benefits and importance of which are experimentally verified. Like other multiframe stereo algorithms, the computational and memory costs of this approach increase linearly with each additional view. Experimental results are shown for two outdoor scenes. It is clearly demonstrated that the number of correspondence errors is significantly reduced as the number of views/cameras is increased." @default.
- W2037819914 created "2016-06-24" @default.
- W2037819914 creator A5046808993 @default.
- W2037819914 creator A5047286157 @default.
- W2037819914 creator A5066516583 @default.
- W2037819914 creator A5082369624 @default.
- W2037819914 date "1996-05-01" @default.
- W2037819914 modified "2023-10-17" @default.
- W2037819914 title "A Maximum Likelihood Stereo Algorithm" @default.
- W2037819914 cites W1556694669 @default.
- W2037819914 cites W1570212358 @default.
- W2037819914 cites W1583214061 @default.
- W2037819914 cites W1604766291 @default.
- W2037819914 cites W1713915947 @default.
- W2037819914 cites W1901518195 @default.
- W2037819914 cites W1977948323 @default.
- W2037819914 cites W1996692737 @default.
- W2037819914 cites W1997494543 @default.
- W2037819914 cites W2028823444 @default.
- W2037819914 cites W2054961868 @default.
- W2037819914 cites W2083161364 @default.
- W2037819914 cites W2104276752 @default.
- W2037819914 cites W2118756337 @default.
- W2037819914 cites W2141128914 @default.
- W2037819914 cites W2141984741 @default.
- W2037819914 cites W2144556767 @default.
- W2037819914 cites W2152541238 @default.
- W2037819914 cites W2168564612 @default.
- W2037819914 cites W2171551622 @default.
- W2037819914 cites W2245152600 @default.
- W2037819914 cites W2570617923 @default.
- W2037819914 cites W2913192828 @default.
- W2037819914 doi "https://doi.org/10.1006/cviu.1996.0040" @default.
- W2037819914 hasPublicationYear "1996" @default.
- W2037819914 type Work @default.
- W2037819914 sameAs 2037819914 @default.
- W2037819914 citedByCount "436" @default.
- W2037819914 countsByYear W20378199142012 @default.
- W2037819914 countsByYear W20378199142013 @default.
- W2037819914 countsByYear W20378199142014 @default.
- W2037819914 countsByYear W20378199142015 @default.
- W2037819914 countsByYear W20378199142016 @default.
- W2037819914 countsByYear W20378199142017 @default.
- W2037819914 countsByYear W20378199142018 @default.
- W2037819914 countsByYear W20378199142019 @default.
- W2037819914 countsByYear W20378199142020 @default.
- W2037819914 countsByYear W20378199142021 @default.
- W2037819914 countsByYear W20378199142022 @default.
- W2037819914 countsByYear W20378199142023 @default.
- W2037819914 crossrefType "journal-article" @default.
- W2037819914 hasAuthorship W2037819914A5046808993 @default.
- W2037819914 hasAuthorship W2037819914A5047286157 @default.
- W2037819914 hasAuthorship W2037819914A5066516583 @default.
- W2037819914 hasAuthorship W2037819914A5082369624 @default.
- W2037819914 hasConcept C105795698 @default.
- W2037819914 hasConcept C11413529 @default.
- W2037819914 hasConcept C115961682 @default.
- W2037819914 hasConcept C134306372 @default.
- W2037819914 hasConcept C138885662 @default.
- W2037819914 hasConcept C153180895 @default.
- W2037819914 hasConcept C154945302 @default.
- W2037819914 hasConcept C160633673 @default.
- W2037819914 hasConcept C165064840 @default.
- W2037819914 hasConcept C186633575 @default.
- W2037819914 hasConcept C23379248 @default.
- W2037819914 hasConcept C2776135515 @default.
- W2037819914 hasConcept C2776401178 @default.
- W2037819914 hasConcept C33923547 @default.
- W2037819914 hasConcept C41008148 @default.
- W2037819914 hasConcept C41895202 @default.
- W2037819914 hasConceptScore W2037819914C105795698 @default.
- W2037819914 hasConceptScore W2037819914C11413529 @default.
- W2037819914 hasConceptScore W2037819914C115961682 @default.
- W2037819914 hasConceptScore W2037819914C134306372 @default.
- W2037819914 hasConceptScore W2037819914C138885662 @default.
- W2037819914 hasConceptScore W2037819914C153180895 @default.
- W2037819914 hasConceptScore W2037819914C154945302 @default.
- W2037819914 hasConceptScore W2037819914C160633673 @default.
- W2037819914 hasConceptScore W2037819914C165064840 @default.
- W2037819914 hasConceptScore W2037819914C186633575 @default.
- W2037819914 hasConceptScore W2037819914C23379248 @default.
- W2037819914 hasConceptScore W2037819914C2776135515 @default.
- W2037819914 hasConceptScore W2037819914C2776401178 @default.
- W2037819914 hasConceptScore W2037819914C33923547 @default.
- W2037819914 hasConceptScore W2037819914C41008148 @default.
- W2037819914 hasConceptScore W2037819914C41895202 @default.
- W2037819914 hasIssue "3" @default.
- W2037819914 hasLocation W20378199141 @default.
- W2037819914 hasOpenAccess W2037819914 @default.
- W2037819914 hasPrimaryLocation W20378199141 @default.
- W2037819914 hasRelatedWork W132764016 @default.
- W2037819914 hasRelatedWork W2132043085 @default.
- W2037819914 hasRelatedWork W2144496413 @default.
- W2037819914 hasRelatedWork W2148054235 @default.
- W2037819914 hasRelatedWork W2336873990 @default.
- W2037819914 hasRelatedWork W2369285629 @default.
- W2037819914 hasRelatedWork W2788440385 @default.
- W2037819914 hasRelatedWork W3094179683 @default.