Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037857465> ?p ?o ?g. }
- W2037857465 abstract "The magnetic and electronic properties of both linear and zigzag atomic chains of all $3d$ transition metals have been calculated within density functional theory with the generalized gradient approximation. The underlying atomic structures were determined theoretically. It is found that all the zigzag chains except the nonmagnetic Ni and antiferromagnetic (AF) Fe chains, which form a twisted two-legger ladder, look like a corner-sharing triangle ribbon and have a lower total energy than the corresponding linear chains. All the $3d$ transition metals in both linear and zigzag structures have a stable or metastable ferromagnetic (FM) state. Furthermore, in the V, Cr, Mn, Fe, and Co linear chains and Cr, Mn, Fe, Co, and Ni zigzag chains, a stable or metastable AF state also exists. In the Sc, Ti, Fe, Co, and Ni linear structures, the FM state is the ground state, while in the V, Cr, and Mn linear chains, the AF state is the ground state. The electronic spin polarization at the Fermi level in the FM Sc, V, Mn, Fe, Co, and Ni linear chains is close to 90% or above, suggesting that these nanostructures may have applications in spin-transport devices. Interestingly, the V, Cr, Mn, and Fe linear chains show a giant magnetolattice expansion of up to 54%. In the zigzag structure, the AF state is more stable than the FM state only in the Cr chain. Both the electronic magnetocrystalline anisotropy and magnetic dipolar (shape) anisotropy energies are calculated. It is found that the shape anisotropy energy may be comparable to the electronic one and always prefers the axial magnetization in both the linear and zigzag structures. In the zigzag chains, there is also a pronounced shape anisotropy in the plane perpendicular to the chain axis. Nonetheless, in the FM Ti, Mn, and Co linear chains and AF Cr, Mn, and Fe linear chains, the electronic anisotropy is perpendicular, and it is so large in the FM Ti and Co linear chains as well as in AF Cr, Mn, and Fe linear chains that the easy magnetization axis is perpendicular. In the AF Cr and FM Ni zigzag structures, the easy magnetization direction is also perpendicular to the chain axis, but in the ribbon plane. Remarkably, the axial magnetic anisotropy in the FM Ni linear chain is gigantic, being $ensuremath{sim}12phantom{rule{0.3em}{0ex}}mathrm{meV}$/atom, suggesting that Ni nanowires may have applications in ultrahigh density magnetic memories and hard disks. Interestingly, there is a spin-reorientation transition in the FM Fe and Co linear chains when the chains are compressed or elongated. Large orbital magnetic moment is found in the FM Fe, Co, and Ni linear chains. Finally, the band structure and density of states of the nanowires have also been calculated to identify the electronic origin of the magnetocrystalline anisotropy and orbital magnetic moment." @default.
- W2037857465 created "2016-06-24" @default.
- W2037857465 creator A5006679860 @default.
- W2037857465 creator A5064661640 @default.
- W2037857465 date "2007-09-21" @default.
- W2037857465 modified "2023-10-16" @default.
- W2037857465 title "Systematic<i>ab initio</i>study of the magnetic and electronic properties of all<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mrow><mml:mn>3</mml:mn><mml:mi>d</mml:mi></mml:mrow></mml:math>transition metal linear and zigzag nanowires" @default.
- W2037857465 cites W1629365489 @default.
- W2037857465 cites W1647346761 @default.
- W2037857465 cites W1967753904 @default.
- W2037857465 cites W1968248628 @default.
- W2037857465 cites W1968426044 @default.
- W2037857465 cites W1970127494 @default.
- W2037857465 cites W1970573761 @default.
- W2037857465 cites W1972536199 @default.
- W2037857465 cites W1976294475 @default.
- W2037857465 cites W1978857060 @default.
- W2037857465 cites W1979092634 @default.
- W2037857465 cites W1979544533 @default.
- W2037857465 cites W1979682748 @default.
- W2037857465 cites W1980107501 @default.
- W2037857465 cites W1980577631 @default.
- W2037857465 cites W1986073694 @default.
- W2037857465 cites W1995754080 @default.
- W2037857465 cites W1996742836 @default.
- W2037857465 cites W1997870397 @default.
- W2037857465 cites W2000032807 @default.
- W2037857465 cites W2000355473 @default.
- W2037857465 cites W2001676859 @default.
- W2037857465 cites W2006818631 @default.
- W2037857465 cites W2007395042 @default.
- W2037857465 cites W2008317504 @default.
- W2037857465 cites W2011462439 @default.
- W2037857465 cites W2015252370 @default.
- W2037857465 cites W2019621799 @default.
- W2037857465 cites W2019887387 @default.
- W2037857465 cites W2021867088 @default.
- W2037857465 cites W2022100154 @default.
- W2037857465 cites W2024189188 @default.
- W2037857465 cites W2031390763 @default.
- W2037857465 cites W2044403363 @default.
- W2037857465 cites W2049079467 @default.
- W2037857465 cites W2051077801 @default.
- W2037857465 cites W2053263817 @default.
- W2037857465 cites W2057018079 @default.
- W2037857465 cites W2058915655 @default.
- W2037857465 cites W2059947203 @default.
- W2037857465 cites W2063196641 @default.
- W2037857465 cites W2065478760 @default.
- W2037857465 cites W2067379459 @default.
- W2037857465 cites W2075278603 @default.
- W2037857465 cites W2079337102 @default.
- W2037857465 cites W2080618701 @default.
- W2037857465 cites W2088623214 @default.
- W2037857465 cites W2088682725 @default.
- W2037857465 cites W2092944592 @default.
- W2037857465 cites W2094730585 @default.
- W2037857465 cites W2098853164 @default.
- W2037857465 cites W2117932337 @default.
- W2037857465 cites W2134613426 @default.
- W2037857465 cites W2137207702 @default.
- W2037857465 cites W2140152975 @default.
- W2037857465 cites W2154783254 @default.
- W2037857465 cites W2157556767 @default.
- W2037857465 cites W2157684850 @default.
- W2037857465 cites W2570671681 @default.
- W2037857465 cites W3103653348 @default.
- W2037857465 doi "https://doi.org/10.1103/physrevb.76.094413" @default.
- W2037857465 hasPublicationYear "2007" @default.
- W2037857465 type Work @default.
- W2037857465 sameAs 2037857465 @default.
- W2037857465 citedByCount "109" @default.
- W2037857465 countsByYear W20378574652012 @default.
- W2037857465 countsByYear W20378574652013 @default.
- W2037857465 countsByYear W20378574652014 @default.
- W2037857465 countsByYear W20378574652015 @default.
- W2037857465 countsByYear W20378574652016 @default.
- W2037857465 countsByYear W20378574652017 @default.
- W2037857465 countsByYear W20378574652018 @default.
- W2037857465 countsByYear W20378574652019 @default.
- W2037857465 countsByYear W20378574652020 @default.
- W2037857465 countsByYear W20378574652021 @default.
- W2037857465 countsByYear W20378574652022 @default.
- W2037857465 countsByYear W20378574652023 @default.
- W2037857465 crossrefType "journal-article" @default.
- W2037857465 hasAuthorship W2037857465A5006679860 @default.
- W2037857465 hasAuthorship W2037857465A5064661640 @default.
- W2037857465 hasBestOaLocation W20378574652 @default.
- W2037857465 hasConcept C121332964 @default.
- W2037857465 hasConcept C152365726 @default.
- W2037857465 hasConcept C155355069 @default.
- W2037857465 hasConcept C184779094 @default.
- W2037857465 hasConcept C185592680 @default.
- W2037857465 hasConcept C192271897 @default.
- W2037857465 hasConcept C192562407 @default.
- W2037857465 hasConcept C2524010 @default.
- W2037857465 hasConcept C26873012 @default.
- W2037857465 hasConcept C2781442258 @default.
- W2037857465 hasConcept C33923547 @default.
- W2037857465 hasConcept C62520636 @default.