Matches in SemOpenAlex for { <https://semopenalex.org/work/W2037916807> ?p ?o ?g. }
- W2037916807 endingPage "143" @default.
- W2037916807 startingPage "134" @default.
- W2037916807 abstract "This paper presents a Multi-feature Multi-Manifold Learning (M3L) method for single-sample face recognition (SSFR). While numerous face recognition methods have been proposed over the past two decades, most of them suffer a heavy performance drop or even fail to work for the SSFR problem because there are not enough training samples for discriminative feature extraction. In this paper, we propose a M3L method to extract multiple discriminative features from face image patches. First, each registered face image is partitioned into several non-overlapping patches and multiple local features are extracted within each patch. Then, we formulate SSFR as a multi-feature multi-manifold matching problem and multiple discriminative feature subspaces are jointly learned to maximize the manifold margins of different persons, so that person-specific discriminative information is exploited for recognition. Lastly, we present a multi-feature manifold–manifold distance measure to recognize the probe subjects. Experimental results on the widely used AR, FERET and LFW datasets demonstrate the efficacy of our proposed approach." @default.
- W2037916807 created "2016-06-24" @default.
- W2037916807 creator A5011536717 @default.
- W2037916807 creator A5076861550 @default.
- W2037916807 creator A5085431435 @default.
- W2037916807 creator A5090079801 @default.
- W2037916807 date "2014-11-01" @default.
- W2037916807 modified "2023-09-26" @default.
- W2037916807 title "Multi-feature multi-manifold learning for single-sample face recognition" @default.
- W2037916807 cites W1535298460 @default.
- W2037916807 cites W1545641654 @default.
- W2037916807 cites W1865963168 @default.
- W2037916807 cites W1982850300 @default.
- W2037916807 cites W1996765463 @default.
- W2037916807 cites W2001141328 @default.
- W2037916807 cites W2001947174 @default.
- W2037916807 cites W2004683109 @default.
- W2037916807 cites W2024853191 @default.
- W2037916807 cites W2033419168 @default.
- W2037916807 cites W2038165640 @default.
- W2037916807 cites W2053186076 @default.
- W2037916807 cites W2062019416 @default.
- W2037916807 cites W2070343473 @default.
- W2037916807 cites W2075772568 @default.
- W2037916807 cites W2083965952 @default.
- W2037916807 cites W2090504921 @default.
- W2037916807 cites W2090929963 @default.
- W2037916807 cites W2092131162 @default.
- W2037916807 cites W2095189186 @default.
- W2037916807 cites W2097193191 @default.
- W2037916807 cites W2097308346 @default.
- W2037916807 cites W2097777575 @default.
- W2037916807 cites W2102544846 @default.
- W2037916807 cites W2104294146 @default.
- W2037916807 cites W2107369107 @default.
- W2037916807 cites W2108767394 @default.
- W2037916807 cites W2110410904 @default.
- W2037916807 cites W2117553576 @default.
- W2037916807 cites W2120453412 @default.
- W2037916807 cites W2121647436 @default.
- W2037916807 cites W2123115309 @default.
- W2037916807 cites W2131081720 @default.
- W2037916807 cites W2138451337 @default.
- W2037916807 cites W2143103810 @default.
- W2037916807 cites W2156142937 @default.
- W2037916807 cites W2162854380 @default.
- W2037916807 cites W2163999590 @default.
- W2037916807 cites W2165731615 @default.
- W2037916807 cites W2167999447 @default.
- W2037916807 cites W3148981562 @default.
- W2037916807 cites W7299809 @default.
- W2037916807 doi "https://doi.org/10.1016/j.neucom.2014.06.012" @default.
- W2037916807 hasPublicationYear "2014" @default.
- W2037916807 type Work @default.
- W2037916807 sameAs 2037916807 @default.
- W2037916807 citedByCount "51" @default.
- W2037916807 countsByYear W20379168072015 @default.
- W2037916807 countsByYear W20379168072016 @default.
- W2037916807 countsByYear W20379168072017 @default.
- W2037916807 countsByYear W20379168072018 @default.
- W2037916807 countsByYear W20379168072019 @default.
- W2037916807 countsByYear W20379168072020 @default.
- W2037916807 countsByYear W20379168072021 @default.
- W2037916807 countsByYear W20379168072022 @default.
- W2037916807 countsByYear W20379168072023 @default.
- W2037916807 crossrefType "journal-article" @default.
- W2037916807 hasAuthorship W2037916807A5011536717 @default.
- W2037916807 hasAuthorship W2037916807A5076861550 @default.
- W2037916807 hasAuthorship W2037916807A5085431435 @default.
- W2037916807 hasAuthorship W2037916807A5090079801 @default.
- W2037916807 hasConcept C105795698 @default.
- W2037916807 hasConcept C12362212 @default.
- W2037916807 hasConcept C127413603 @default.
- W2037916807 hasConcept C138885662 @default.
- W2037916807 hasConcept C144024400 @default.
- W2037916807 hasConcept C151876577 @default.
- W2037916807 hasConcept C153120616 @default.
- W2037916807 hasConcept C153180895 @default.
- W2037916807 hasConcept C154945302 @default.
- W2037916807 hasConcept C165064840 @default.
- W2037916807 hasConcept C2524010 @default.
- W2037916807 hasConcept C2776401178 @default.
- W2037916807 hasConcept C2779304628 @default.
- W2037916807 hasConcept C31510193 @default.
- W2037916807 hasConcept C33923547 @default.
- W2037916807 hasConcept C36289849 @default.
- W2037916807 hasConcept C41008148 @default.
- W2037916807 hasConcept C41895202 @default.
- W2037916807 hasConcept C52622490 @default.
- W2037916807 hasConcept C529865628 @default.
- W2037916807 hasConcept C70518039 @default.
- W2037916807 hasConcept C78519656 @default.
- W2037916807 hasConcept C97931131 @default.
- W2037916807 hasConceptScore W2037916807C105795698 @default.
- W2037916807 hasConceptScore W2037916807C12362212 @default.
- W2037916807 hasConceptScore W2037916807C127413603 @default.
- W2037916807 hasConceptScore W2037916807C138885662 @default.
- W2037916807 hasConceptScore W2037916807C144024400 @default.