Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038003362> ?p ?o ?g. }
- W2038003362 endingPage "44" @default.
- W2038003362 startingPage "34" @default.
- W2038003362 abstract "Hydration of the oceanic lithosphere is an important and ubiquitous process which alters both the chemical and physical properties of the affected lithologies. One of the most important reactions that affect the mantle is serpentinization. The process of serpentinization results in a drastic decrease in the density (up to 40%), seismic velocity and brittle strength as well as water uptake of up to 13 wt.% of the ultramafic rock. In this paper, we use numerical models to study the amount and extent of serpentinization that may occur at mid-ocean ridges and its effects on fluid flow within the lithosphere. The two dimensional, FEM model solves three coupled, time-dependent equations: (i) mass-conserving Darcy flow equation, (ii) energy conserving heat transport equation and (iii) serpentinization rate of olivine with feedbacks to temperature (exothermic reaction), fluid consumption and variations in porosity and permeability (volume changes). The thermal structure of the ridge is strongly influenced by rock permeability in addition to the spreading velocity of the ridge. Increased rock permeability enhances hydrothermal convection and results in efficient heat mining from the lithosphere whereas higher spreading velocities result in a higher thermal gradient. Serpentinization of the oceanic mantle, in turn, depends on the aforementioned, competing processes. However, serpentinization of mantle rocks is itself likely to result in strong variations of rock porosity and permeability. Here we explore the coupled feedbacks. Increasing rates of serpentinization lead to large volume changes and therefore, rock fracturing thereby increasing rock porosity/permeability while as serpentinization reaches completion, the open pore space in the rock is reduced due to the relative dominance of mineral precipitation. Although, variations in the relation between porosity and permeability and serpentinization before the reaction reaches completion do not significantly affect the degree of serpentinization, we find that unreasonably large portions of the mantle would be serpentinized if rock closure does not occur at the final reaction stage. The amount of water trapped as hydrous phases within the mantle shows a strong dependency on the spreading velocity of the ridge with water content ranging from 0.18 × 105 kg/m2 to 2.52 × 105 kg/m2. Additionally, two distinct trends are observed where the water content in the mantle at slow-spreading ridges drops dramatically with an increase in spreading velocity. The amount of water trapped in the mantle at fast-spreading ridges, on the other hand, is lower and does not significantly depend on spreading velocity." @default.
- W2038003362 created "2016-06-24" @default.
- W2038003362 creator A5012547724 @default.
- W2038003362 creator A5034051619 @default.
- W2038003362 creator A5068680977 @default.
- W2038003362 date "2010-07-01" @default.
- W2038003362 modified "2023-10-18" @default.
- W2038003362 title "Feedbacks between mantle hydration and hydrothermal convection at ocean spreading centers" @default.
- W2038003362 cites W1489332407 @default.
- W2038003362 cites W1508381481 @default.
- W2038003362 cites W1550118517 @default.
- W2038003362 cites W1674991382 @default.
- W2038003362 cites W1964421696 @default.
- W2038003362 cites W1967528694 @default.
- W2038003362 cites W1968662025 @default.
- W2038003362 cites W1969764220 @default.
- W2038003362 cites W1974710232 @default.
- W2038003362 cites W1981970781 @default.
- W2038003362 cites W1984254196 @default.
- W2038003362 cites W1986098718 @default.
- W2038003362 cites W1986402080 @default.
- W2038003362 cites W1988606291 @default.
- W2038003362 cites W1989885750 @default.
- W2038003362 cites W1993665248 @default.
- W2038003362 cites W2017264474 @default.
- W2038003362 cites W2017649324 @default.
- W2038003362 cites W2025703307 @default.
- W2038003362 cites W2025716281 @default.
- W2038003362 cites W2027177435 @default.
- W2038003362 cites W2028310377 @default.
- W2038003362 cites W2034058675 @default.
- W2038003362 cites W2039066042 @default.
- W2038003362 cites W2039259349 @default.
- W2038003362 cites W2044737780 @default.
- W2038003362 cites W2049878764 @default.
- W2038003362 cites W2052090210 @default.
- W2038003362 cites W2055954432 @default.
- W2038003362 cites W2056368446 @default.
- W2038003362 cites W2057655240 @default.
- W2038003362 cites W2067892409 @default.
- W2038003362 cites W2073097483 @default.
- W2038003362 cites W2076447745 @default.
- W2038003362 cites W2091781854 @default.
- W2038003362 cites W2100014198 @default.
- W2038003362 cites W2107750220 @default.
- W2038003362 cites W2121861795 @default.
- W2038003362 cites W2128996948 @default.
- W2038003362 cites W2136412446 @default.
- W2038003362 cites W2145797186 @default.
- W2038003362 cites W2152773850 @default.
- W2038003362 cites W2162859581 @default.
- W2038003362 cites W2171617692 @default.
- W2038003362 cites W2176574796 @default.
- W2038003362 doi "https://doi.org/10.1016/j.epsl.2010.04.037" @default.
- W2038003362 hasPublicationYear "2010" @default.
- W2038003362 type Work @default.
- W2038003362 sameAs 2038003362 @default.
- W2038003362 citedByCount "53" @default.
- W2038003362 countsByYear W20380033622012 @default.
- W2038003362 countsByYear W20380033622013 @default.
- W2038003362 countsByYear W20380033622014 @default.
- W2038003362 countsByYear W20380033622015 @default.
- W2038003362 countsByYear W20380033622016 @default.
- W2038003362 countsByYear W20380033622017 @default.
- W2038003362 countsByYear W20380033622018 @default.
- W2038003362 countsByYear W20380033622019 @default.
- W2038003362 countsByYear W20380033622020 @default.
- W2038003362 countsByYear W20380033622021 @default.
- W2038003362 countsByYear W20380033622022 @default.
- W2038003362 countsByYear W20380033622023 @default.
- W2038003362 crossrefType "journal-article" @default.
- W2038003362 hasAuthorship W2038003362A5012547724 @default.
- W2038003362 hasAuthorship W2038003362A5034051619 @default.
- W2038003362 hasAuthorship W2038003362A5068680977 @default.
- W2038003362 hasConcept C10899652 @default.
- W2038003362 hasConcept C120882062 @default.
- W2038003362 hasConcept C121332964 @default.
- W2038003362 hasConcept C127313418 @default.
- W2038003362 hasConcept C156622251 @default.
- W2038003362 hasConcept C165205528 @default.
- W2038003362 hasConcept C16942324 @default.
- W2038003362 hasConcept C17409809 @default.
- W2038003362 hasConcept C2780364934 @default.
- W2038003362 hasConcept C41625074 @default.
- W2038003362 hasConcept C51151373 @default.
- W2038003362 hasConcept C54355233 @default.
- W2038003362 hasConcept C5900021 @default.
- W2038003362 hasConcept C67236022 @default.
- W2038003362 hasConcept C77928131 @default.
- W2038003362 hasConcept C8058405 @default.
- W2038003362 hasConcept C84372278 @default.
- W2038003362 hasConcept C86803240 @default.
- W2038003362 hasConcept C97355855 @default.
- W2038003362 hasConceptScore W2038003362C10899652 @default.
- W2038003362 hasConceptScore W2038003362C120882062 @default.
- W2038003362 hasConceptScore W2038003362C121332964 @default.
- W2038003362 hasConceptScore W2038003362C127313418 @default.
- W2038003362 hasConceptScore W2038003362C156622251 @default.