Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038003727> ?p ?o ?g. }
- W2038003727 endingPage "786" @default.
- W2038003727 startingPage "776" @default.
- W2038003727 abstract "Crop simulation models can provide an alternative, less time-consuming and inexpensive means of determining the optimum crop N and irrigation requirements under varied soil and climatic conditions. In this context, two dynamic mechanistic models (CERES (Crop Environment REsource Synthesis)-Wheat and CropSyst (Cropping Systems Simulation Model)) were validated for predicting growth and yield of wheat (Triticum aestivum L) under different nitrogen and water management conditions. Their potential as N and water management tool was evaluated for New Delhi representing semi-arid irrigated ecosystems in the Indo-Gangetic Plains. The field experiment was carried out on a silty clay loam soil at the Research Farm of the Indian Agricultural Research Institute, New Delhi, India during 2000–2001 to collect the input data for the calibration and validation of both the models on wheat crop (variety HD 2687). The models were evaluated for three water regimes [I4 (4 irrigations within the growing season), I3 (3 irrigations within the growing season) and I2 (2 irrigations within the growing season)] and five N treatments (N0, N60, N90, N120 and N150). Both the models were calibrated using data obtained from the treatments receiving maximum nitrogen and irrigations, i.e., N150 and I4 treatments. The models were then validated against other water and nitrogen treatments. For performance evaluation, in addition to coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and Wilmot's index of agreement (IoA) were estimated. Both CERES-Wheat and CropSyst provided very satisfactory estimates for the emergence, flowering and physiological maturity dates. For CERES-Wheat overall prediction (pooled result of the three water regimes) of grain yield was satisfactory with significant R2 values (0.88). The model, however, under estimated the biomass under all water regimes and N levels except for N0 level, under which biomass was overpredicted. CropSyst predicted yield and biomass of wheat more closely than CERES-Wheat. The combined RMSE for the three water regimes between predicted and observed grain yield was 0.36 Mg ha−1 for CropSyst as compared to 0.63 Mg ha−1 for CERES-Wheat. Similarly, RMSE between observed and predicted biomass by CropSyst was 1.27 Mg ha−1 as compared to 1.94 Mg ha−1 between observed and predicted biomass by CERES-Wheat. Wilmot's index of agreement (IoA) also indicated that CropSyst model is more appropriate than CERES-Wheat in predicting growth and yield of wheat under different N and irrigation application situations in this study." @default.
- W2038003727 created "2016-06-24" @default.
- W2038003727 creator A5014873707 @default.
- W2038003727 creator A5045614885 @default.
- W2038003727 creator A5052547228 @default.
- W2038003727 date "2008-07-01" @default.
- W2038003727 modified "2023-10-16" @default.
- W2038003727 title "Evaluation of CERES-Wheat and CropSyst models for water–nitrogen interactions in wheat crop" @default.
- W2038003727 cites W11137323 @default.
- W2038003727 cites W1970406261 @default.
- W2038003727 cites W1985279971 @default.
- W2038003727 cites W1992609391 @default.
- W2038003727 cites W1994811878 @default.
- W2038003727 cites W1999887144 @default.
- W2038003727 cites W2011978550 @default.
- W2038003727 cites W2019932413 @default.
- W2038003727 cites W2029321785 @default.
- W2038003727 cites W2031139013 @default.
- W2038003727 cites W2034017784 @default.
- W2038003727 cites W2037896669 @default.
- W2038003727 cites W2038106368 @default.
- W2038003727 cites W2042929987 @default.
- W2038003727 cites W2047884674 @default.
- W2038003727 cites W2050725673 @default.
- W2038003727 cites W2064653927 @default.
- W2038003727 cites W2065756692 @default.
- W2038003727 cites W2073253624 @default.
- W2038003727 cites W2085902144 @default.
- W2038003727 cites W2086877628 @default.
- W2038003727 cites W2088304152 @default.
- W2038003727 cites W2091160252 @default.
- W2038003727 cites W2130292506 @default.
- W2038003727 cites W2148989725 @default.
- W2038003727 cites W4248700238 @default.
- W2038003727 doi "https://doi.org/10.1016/j.agwat.2008.02.006" @default.
- W2038003727 hasPublicationYear "2008" @default.
- W2038003727 type Work @default.
- W2038003727 sameAs 2038003727 @default.
- W2038003727 citedByCount "120" @default.
- W2038003727 countsByYear W20380037272012 @default.
- W2038003727 countsByYear W20380037272013 @default.
- W2038003727 countsByYear W20380037272014 @default.
- W2038003727 countsByYear W20380037272015 @default.
- W2038003727 countsByYear W20380037272016 @default.
- W2038003727 countsByYear W20380037272017 @default.
- W2038003727 countsByYear W20380037272018 @default.
- W2038003727 countsByYear W20380037272019 @default.
- W2038003727 countsByYear W20380037272020 @default.
- W2038003727 countsByYear W20380037272021 @default.
- W2038003727 countsByYear W20380037272022 @default.
- W2038003727 countsByYear W20380037272023 @default.
- W2038003727 crossrefType "journal-article" @default.
- W2038003727 hasAuthorship W2038003727A5014873707 @default.
- W2038003727 hasAuthorship W2038003727A5045614885 @default.
- W2038003727 hasAuthorship W2038003727A5052547228 @default.
- W2038003727 hasConcept C108215451 @default.
- W2038003727 hasConcept C113578266 @default.
- W2038003727 hasConcept C118518473 @default.
- W2038003727 hasConcept C127413603 @default.
- W2038003727 hasConcept C13558536 @default.
- W2038003727 hasConcept C137580998 @default.
- W2038003727 hasConcept C137660486 @default.
- W2038003727 hasConcept C144237770 @default.
- W2038003727 hasConcept C159390177 @default.
- W2038003727 hasConcept C159750122 @default.
- W2038003727 hasConcept C166957645 @default.
- W2038003727 hasConcept C187320778 @default.
- W2038003727 hasConcept C18903297 @default.
- W2038003727 hasConcept C205649164 @default.
- W2038003727 hasConcept C2777106113 @default.
- W2038003727 hasConcept C2779343474 @default.
- W2038003727 hasConcept C33923547 @default.
- W2038003727 hasConcept C39432304 @default.
- W2038003727 hasConcept C6557445 @default.
- W2038003727 hasConcept C76886044 @default.
- W2038003727 hasConcept C86803240 @default.
- W2038003727 hasConcept C88862950 @default.
- W2038003727 hasConceptScore W2038003727C108215451 @default.
- W2038003727 hasConceptScore W2038003727C113578266 @default.
- W2038003727 hasConceptScore W2038003727C118518473 @default.
- W2038003727 hasConceptScore W2038003727C127413603 @default.
- W2038003727 hasConceptScore W2038003727C13558536 @default.
- W2038003727 hasConceptScore W2038003727C137580998 @default.
- W2038003727 hasConceptScore W2038003727C137660486 @default.
- W2038003727 hasConceptScore W2038003727C144237770 @default.
- W2038003727 hasConceptScore W2038003727C159390177 @default.
- W2038003727 hasConceptScore W2038003727C159750122 @default.
- W2038003727 hasConceptScore W2038003727C166957645 @default.
- W2038003727 hasConceptScore W2038003727C187320778 @default.
- W2038003727 hasConceptScore W2038003727C18903297 @default.
- W2038003727 hasConceptScore W2038003727C205649164 @default.
- W2038003727 hasConceptScore W2038003727C2777106113 @default.
- W2038003727 hasConceptScore W2038003727C2779343474 @default.
- W2038003727 hasConceptScore W2038003727C33923547 @default.
- W2038003727 hasConceptScore W2038003727C39432304 @default.
- W2038003727 hasConceptScore W2038003727C6557445 @default.
- W2038003727 hasConceptScore W2038003727C76886044 @default.
- W2038003727 hasConceptScore W2038003727C86803240 @default.