Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038116343> ?p ?o ?g. }
- W2038116343 endingPage "1608.e6" @default.
- W2038116343 startingPage "1608.e1" @default.
- W2038116343 abstract "Purpose To develop an artificial neural network (ANN) that will forecast the 5-year mortality from choroidal melanoma. Design Retrospective, comparative, observational cohort study. Participants One hundred fifty-three eyes of 153 consecutive patients with choroidal melanoma (age, 58.4±14.6 years) who were treated with ruthenium 106 brachytherapy between 1988 and 1998 at the Department of Ophthalmology, Hadassah University Hospital, Jerusalem, Israel. Methods Patients were observed clinically and ultrasonographically (A- and B-mode standardized ultrasonography). Metastatic screening included liver function tests and liver imaging. Backpropagation ANNs composed of 3 or 4 layers of neurons with various types of transfer functions and training protocols were assessed for their ability to predict the 5-year mortality. The ANNs were trained on 77 randomly selected patients and tested on a different set of 76 patients. Artificial neural networks were compared based on their sensitivity, specificity, forecasting accuracy, area under the receiver operating curves, and likelihood ratios (LRs). The best ANN was compared with the results of logistic regression and the performance of an ocular oncologist. Main Outcome The ability of the ANNs to forecast the 5-year mortality from choroidal melanoma. Results Thirty-one patients died during the follow-up period of metastatic choroidal melanoma. The best ANN (one hidden layer of 16 neurons) had 84% forecasting accuracy and an LR of 31.5. The number of hidden neurons significantly influenced the ANNs’ performance (P<0.001). The performance of the ANNs was not significantly influenced by the training protocol, the number of hidden layers, or the type of transfer function. In comparison, logistic regression reached 86% forecasting accuracy, with a very low LR (0.8), whereas the human expert forecasting ability was <70% (LR, 1.85). Conclusions Artificial neural networks can be used for forecasting the prognosis of choroidal melanoma and may support decision-making in treating this malignancy. To develop an artificial neural network (ANN) that will forecast the 5-year mortality from choroidal melanoma. Retrospective, comparative, observational cohort study. One hundred fifty-three eyes of 153 consecutive patients with choroidal melanoma (age, 58.4±14.6 years) who were treated with ruthenium 106 brachytherapy between 1988 and 1998 at the Department of Ophthalmology, Hadassah University Hospital, Jerusalem, Israel. Patients were observed clinically and ultrasonographically (A- and B-mode standardized ultrasonography). Metastatic screening included liver function tests and liver imaging. Backpropagation ANNs composed of 3 or 4 layers of neurons with various types of transfer functions and training protocols were assessed for their ability to predict the 5-year mortality. The ANNs were trained on 77 randomly selected patients and tested on a different set of 76 patients. Artificial neural networks were compared based on their sensitivity, specificity, forecasting accuracy, area under the receiver operating curves, and likelihood ratios (LRs). The best ANN was compared with the results of logistic regression and the performance of an ocular oncologist. The ability of the ANNs to forecast the 5-year mortality from choroidal melanoma. Thirty-one patients died during the follow-up period of metastatic choroidal melanoma. The best ANN (one hidden layer of 16 neurons) had 84% forecasting accuracy and an LR of 31.5. The number of hidden neurons significantly influenced the ANNs’ performance (P<0.001). The performance of the ANNs was not significantly influenced by the training protocol, the number of hidden layers, or the type of transfer function. In comparison, logistic regression reached 86% forecasting accuracy, with a very low LR (0.8), whereas the human expert forecasting ability was <70% (LR, 1.85). Artificial neural networks can be used for forecasting the prognosis of choroidal melanoma and may support decision-making in treating this malignancy." @default.
- W2038116343 created "2016-06-24" @default.
- W2038116343 creator A5011349438 @default.
- W2038116343 creator A5039407618 @default.
- W2038116343 creator A5081265839 @default.
- W2038116343 date "2005-09-01" @default.
- W2038116343 modified "2023-09-24" @default.
- W2038116343 title "Forecasting the Prognosis of Choroidal Melanoma with an Artificial Neural Network" @default.
- W2038116343 cites W1552595466 @default.
- W2038116343 cites W1964122496 @default.
- W2038116343 cites W1968114652 @default.
- W2038116343 cites W1974715203 @default.
- W2038116343 cites W1976587022 @default.
- W2038116343 cites W1983253910 @default.
- W2038116343 cites W1989786678 @default.
- W2038116343 cites W1990072263 @default.
- W2038116343 cites W1992315099 @default.
- W2038116343 cites W1999575468 @default.
- W2038116343 cites W2001538852 @default.
- W2038116343 cites W2013944616 @default.
- W2038116343 cites W2014344989 @default.
- W2038116343 cites W2015276789 @default.
- W2038116343 cites W2015563766 @default.
- W2038116343 cites W2027998941 @default.
- W2038116343 cites W2038927192 @default.
- W2038116343 cites W2038976500 @default.
- W2038116343 cites W2041388201 @default.
- W2038116343 cites W2051223415 @default.
- W2038116343 cites W2052418269 @default.
- W2038116343 cites W2065861182 @default.
- W2038116343 cites W2068656389 @default.
- W2038116343 cites W2075275985 @default.
- W2038116343 cites W2089223199 @default.
- W2038116343 cites W2094542085 @default.
- W2038116343 cites W2102150307 @default.
- W2038116343 cites W2143885373 @default.
- W2038116343 cites W2724366277 @default.
- W2038116343 cites W33364968 @default.
- W2038116343 doi "https://doi.org/10.1016/j.ophtha.2005.04.008" @default.
- W2038116343 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16023213" @default.
- W2038116343 hasPublicationYear "2005" @default.
- W2038116343 type Work @default.
- W2038116343 sameAs 2038116343 @default.
- W2038116343 citedByCount "25" @default.
- W2038116343 countsByYear W20381163432012 @default.
- W2038116343 countsByYear W20381163432015 @default.
- W2038116343 countsByYear W20381163432016 @default.
- W2038116343 countsByYear W20381163432019 @default.
- W2038116343 countsByYear W20381163432020 @default.
- W2038116343 countsByYear W20381163432021 @default.
- W2038116343 countsByYear W20381163432022 @default.
- W2038116343 countsByYear W20381163432023 @default.
- W2038116343 crossrefType "journal-article" @default.
- W2038116343 hasAuthorship W2038116343A5011349438 @default.
- W2038116343 hasAuthorship W2038116343A5039407618 @default.
- W2038116343 hasAuthorship W2038116343A5081265839 @default.
- W2038116343 hasConcept C119857082 @default.
- W2038116343 hasConcept C126322002 @default.
- W2038116343 hasConcept C151956035 @default.
- W2038116343 hasConcept C167135981 @default.
- W2038116343 hasConcept C2777658100 @default.
- W2038116343 hasConcept C2910410966 @default.
- W2038116343 hasConcept C3019556204 @default.
- W2038116343 hasConcept C41008148 @default.
- W2038116343 hasConcept C502942594 @default.
- W2038116343 hasConcept C50644808 @default.
- W2038116343 hasConcept C58471807 @default.
- W2038116343 hasConcept C71924100 @default.
- W2038116343 hasConcept C72563966 @default.
- W2038116343 hasConceptScore W2038116343C119857082 @default.
- W2038116343 hasConceptScore W2038116343C126322002 @default.
- W2038116343 hasConceptScore W2038116343C151956035 @default.
- W2038116343 hasConceptScore W2038116343C167135981 @default.
- W2038116343 hasConceptScore W2038116343C2777658100 @default.
- W2038116343 hasConceptScore W2038116343C2910410966 @default.
- W2038116343 hasConceptScore W2038116343C3019556204 @default.
- W2038116343 hasConceptScore W2038116343C41008148 @default.
- W2038116343 hasConceptScore W2038116343C502942594 @default.
- W2038116343 hasConceptScore W2038116343C50644808 @default.
- W2038116343 hasConceptScore W2038116343C58471807 @default.
- W2038116343 hasConceptScore W2038116343C71924100 @default.
- W2038116343 hasConceptScore W2038116343C72563966 @default.
- W2038116343 hasIssue "9" @default.
- W2038116343 hasLocation W20381163431 @default.
- W2038116343 hasLocation W20381163432 @default.
- W2038116343 hasOpenAccess W2038116343 @default.
- W2038116343 hasPrimaryLocation W20381163431 @default.
- W2038116343 hasRelatedWork W2056351981 @default.
- W2038116343 hasRelatedWork W2071538067 @default.
- W2038116343 hasRelatedWork W2799952019 @default.
- W2038116343 hasRelatedWork W3047552631 @default.
- W2038116343 hasRelatedWork W3099386970 @default.
- W2038116343 hasRelatedWork W3159096857 @default.
- W2038116343 hasRelatedWork W3190029335 @default.
- W2038116343 hasRelatedWork W4236214032 @default.
- W2038116343 hasRelatedWork W4306247841 @default.
- W2038116343 hasRelatedWork W4367596031 @default.
- W2038116343 hasVolume "112" @default.