Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038222783> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2038222783 endingPage "75" @default.
- W2038222783 startingPage "23" @default.
- W2038222783 abstract "First-order logic is known to have a severely limited expressive power on finite structures. As a result, several different extensions have been investigated, including fragments of second-order logic, fixpoint logic, and the infinitary logic L∞ωω in which every formula has only a finite number of variables. In this paper, we study generalized quantifiers in the realm of finite structures and combine them with the infinitary logic L∞ωω to obtain the logics L∞ωω(Q), where Q = {Qi: iϵ I} is a family of generalized quantifiers on finite structures. Using the logics L∞ωω(Q), we can express polynomial-time properties that are not definable in L∞ωω, such as “there is an even number of x” and “there exists at least n2 x” (n is the size of the universe), without going to second-order logic. We show that equivalence of finite structures relative to L∞ωω(Q) can be characterized in terms of certain pebble games that are a variant of the Ehrenfeucht—Fraïssé games. We combine this game-theoretic characterization with sophisticated combinatorial tools from Ramsey theory, such as van der Waerden's Theorem and Folkman's Theorem, in order to investigate the scope and limits of generalized quantifiers in finite model theory. We obtain sharp lower bounds for expressibility in the logics L∞ωω(Q) and discover an intrinsic difference between adding finitely many simple unary generalized quantifiers to L∞ωω adding infinitely many. In particular, we show that if Qis a finite sequence of simple unary generalized quantifiers, then the equicardinality, or Härtig, quantifier is not definable in L∞ωω(Q). We also show that the query “does the equivalence relation E have an even number of equivalence classes” is not definable in the extension L∞ωω(I,Q) of L∞ωω by the Härtig quantifier I and any finite sequence Q of simple unary generalized quantifiers." @default.
- W2038222783 created "2016-06-24" @default.
- W2038222783 creator A5041825861 @default.
- W2038222783 creator A5067128079 @default.
- W2038222783 date "1995-06-01" @default.
- W2038222783 modified "2023-09-24" @default.
- W2038222783 title "Generalized quantifiers and pebble games on finite structures" @default.
- W2038222783 cites W1974672137 @default.
- W2038222783 cites W1984581643 @default.
- W2038222783 cites W1984890936 @default.
- W2038222783 cites W2003895694 @default.
- W2038222783 cites W2023552332 @default.
- W2038222783 cites W2041792487 @default.
- W2038222783 cites W2053510959 @default.
- W2038222783 cites W2059144726 @default.
- W2038222783 cites W2061739322 @default.
- W2038222783 cites W2080309222 @default.
- W2038222783 cites W2082035816 @default.
- W2038222783 cites W2087142904 @default.
- W2038222783 cites W2088094394 @default.
- W2038222783 cites W2132541147 @default.
- W2038222783 cites W2149736013 @default.
- W2038222783 cites W2954301182 @default.
- W2038222783 cites W777021994 @default.
- W2038222783 doi "https://doi.org/10.1016/0168-0072(94)00025-x" @default.
- W2038222783 hasPublicationYear "1995" @default.
- W2038222783 type Work @default.
- W2038222783 sameAs 2038222783 @default.
- W2038222783 citedByCount "96" @default.
- W2038222783 countsByYear W20382227832012 @default.
- W2038222783 countsByYear W20382227832013 @default.
- W2038222783 countsByYear W20382227832015 @default.
- W2038222783 countsByYear W20382227832016 @default.
- W2038222783 countsByYear W20382227832017 @default.
- W2038222783 countsByYear W20382227832019 @default.
- W2038222783 countsByYear W20382227832020 @default.
- W2038222783 countsByYear W20382227832021 @default.
- W2038222783 countsByYear W20382227832022 @default.
- W2038222783 crossrefType "journal-article" @default.
- W2038222783 hasAuthorship W2038222783A5041825861 @default.
- W2038222783 hasAuthorship W2038222783A5067128079 @default.
- W2038222783 hasConcept C102993220 @default.
- W2038222783 hasConcept C111472728 @default.
- W2038222783 hasConcept C118615104 @default.
- W2038222783 hasConcept C138885662 @default.
- W2038222783 hasConcept C144791301 @default.
- W2038222783 hasConcept C169896238 @default.
- W2038222783 hasConcept C2780586882 @default.
- W2038222783 hasConcept C33923547 @default.
- W2038222783 hasConcept C41008148 @default.
- W2038222783 hasConcept C78023250 @default.
- W2038222783 hasConcept C80444323 @default.
- W2038222783 hasConceptScore W2038222783C102993220 @default.
- W2038222783 hasConceptScore W2038222783C111472728 @default.
- W2038222783 hasConceptScore W2038222783C118615104 @default.
- W2038222783 hasConceptScore W2038222783C138885662 @default.
- W2038222783 hasConceptScore W2038222783C144791301 @default.
- W2038222783 hasConceptScore W2038222783C169896238 @default.
- W2038222783 hasConceptScore W2038222783C2780586882 @default.
- W2038222783 hasConceptScore W2038222783C33923547 @default.
- W2038222783 hasConceptScore W2038222783C41008148 @default.
- W2038222783 hasConceptScore W2038222783C78023250 @default.
- W2038222783 hasConceptScore W2038222783C80444323 @default.
- W2038222783 hasIssue "1" @default.
- W2038222783 hasLocation W20382227831 @default.
- W2038222783 hasOpenAccess W2038222783 @default.
- W2038222783 hasPrimaryLocation W20382227831 @default.
- W2038222783 hasRelatedWork W133313031 @default.
- W2038222783 hasRelatedWork W1506703500 @default.
- W2038222783 hasRelatedWork W1963127161 @default.
- W2038222783 hasRelatedWork W2038222783 @default.
- W2038222783 hasRelatedWork W2063991224 @default.
- W2038222783 hasRelatedWork W2129092123 @default.
- W2038222783 hasRelatedWork W2144552594 @default.
- W2038222783 hasRelatedWork W2281786373 @default.
- W2038222783 hasRelatedWork W2963027440 @default.
- W2038222783 hasRelatedWork W3102428005 @default.
- W2038222783 hasVolume "74" @default.
- W2038222783 isParatext "false" @default.
- W2038222783 isRetracted "false" @default.
- W2038222783 magId "2038222783" @default.
- W2038222783 workType "article" @default.