Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038267711> ?p ?o ?g. }
- W2038267711 endingPage "854" @default.
- W2038267711 startingPage "829" @default.
- W2038267711 abstract "Piston-cylinder experiments investigating the interaction between basaltic andesite melt and partially molten gabbro in a thermal gradient provide insight into melt-rock reaction processes occurring during magma differentiation in the crust. In two experiments juxtaposing basaltic andesite and gabbro at 0.5 GPa pressure for durations of either 13 or 26 days, diffusive chemical exchange between the two materials results in mineral layering and notable mineral compositions such as anorthitic plagioclase. Specifically, the basaltic andesite gains Al2O3, MgO and CaO from the gabbro and loses Na2O, K2O, SiO2 and FeO to it with a plagioclase-rich layer developing at the interface between the two materials in a process termed diffusion–reaction. The percent crystallinity of the basaltic andesite increases during the process and the plagioclase crystals within the interface region develop anorthitic cores (up to An90) that abruptly shift in composition to thin rims that are in Na–Ca exchange equilibrium with the co-existing melt. Both the mineralogical layering and bulk compositional change occurring at the interface are reproduced in model simulations of diffusion–reaction. Isotopic tracers (45Ca, 6Li, 84Sr and 136Ba) initially deposited at the basaltic andesite–gabbro interface in the 13-day experiment were detected in the cores of the anorthitic plagioclase after the experiment, demonstrating that the melt chemically communicates with the plagioclase cores over the duration of the diffusion–reaction experiment. The formation of anorthitic plagioclase during diffusion–reaction may explain its widespread occurrence in terrestrial volcanic rocks without requiring the presence of ultra-calcic melts. Textures and mineralogical changes in the gabbro indicate that chemical transport occurs throughout the experiments despite temperatures at the cold end of the experimental capsule approaching 500 °C. For instance, apatite, FeNiS, olivine and almost pure albite occur at distinct, specific horizons in the gabbro within the 26-day experiment. Because the bulk element profiles indicating chemical transport reflect analyses of almost completely solid gabbro, equilibration between minerals and fluids/melts must be rapid. The overall effect of the diffusion–reaction process is to make an ascending magma more primitive in composition (and in this case, produce anorthitic plagioclase) while making surrounding crustal wall rocks more evolved. Several observations within igneous rocks support the occurrence of this process, suggesting that the genesis of porphyritic high alumina basalt, ubiquitously observed at convergent margins, could reflect a diffusion–reaction process in the crust." @default.
- W2038267711 created "2016-06-24" @default.
- W2038267711 creator A5018424240 @default.
- W2038267711 creator A5060654735 @default.
- W2038267711 creator A5086748510 @default.
- W2038267711 date "2005-09-01" @default.
- W2038267711 modified "2023-10-16" @default.
- W2038267711 title "Diffusion–reaction in a thermal gradient: Implications for the genesis of anorthitic plagioclase, high alumina basalt and igneous mineral layering" @default.
- W2038267711 cites W138962173 @default.
- W2038267711 cites W1557091533 @default.
- W2038267711 cites W1560589951 @default.
- W2038267711 cites W1570943294 @default.
- W2038267711 cites W1965260509 @default.
- W2038267711 cites W1967285027 @default.
- W2038267711 cites W1991446948 @default.
- W2038267711 cites W2001077046 @default.
- W2038267711 cites W2005864914 @default.
- W2038267711 cites W2008205772 @default.
- W2038267711 cites W2009790795 @default.
- W2038267711 cites W2010284862 @default.
- W2038267711 cites W2019751060 @default.
- W2038267711 cites W2024615311 @default.
- W2038267711 cites W2027596472 @default.
- W2038267711 cites W2032975081 @default.
- W2038267711 cites W2033084766 @default.
- W2038267711 cites W2038379959 @default.
- W2038267711 cites W2038475296 @default.
- W2038267711 cites W2041130421 @default.
- W2038267711 cites W2042692134 @default.
- W2038267711 cites W2044466725 @default.
- W2038267711 cites W2046736580 @default.
- W2038267711 cites W2049249785 @default.
- W2038267711 cites W2053427269 @default.
- W2038267711 cites W2053483240 @default.
- W2038267711 cites W2054999963 @default.
- W2038267711 cites W2055545528 @default.
- W2038267711 cites W2056974921 @default.
- W2038267711 cites W2057683220 @default.
- W2038267711 cites W2074647551 @default.
- W2038267711 cites W2081985254 @default.
- W2038267711 cites W2084417719 @default.
- W2038267711 cites W2086250167 @default.
- W2038267711 cites W2089369579 @default.
- W2038267711 cites W2090345767 @default.
- W2038267711 cites W2093329912 @default.
- W2038267711 cites W2093332468 @default.
- W2038267711 cites W2106969197 @default.
- W2038267711 cites W2120945229 @default.
- W2038267711 cites W2124972127 @default.
- W2038267711 cites W2133380872 @default.
- W2038267711 cites W2143089387 @default.
- W2038267711 cites W2320088764 @default.
- W2038267711 cites W2339013632 @default.
- W2038267711 cites W2339900394 @default.
- W2038267711 cites W2886013883 @default.
- W2038267711 cites W4254102827 @default.
- W2038267711 doi "https://doi.org/10.1016/j.epsl.2005.06.026" @default.
- W2038267711 hasPublicationYear "2005" @default.
- W2038267711 type Work @default.
- W2038267711 sameAs 2038267711 @default.
- W2038267711 citedByCount "23" @default.
- W2038267711 countsByYear W20382677112013 @default.
- W2038267711 countsByYear W20382677112014 @default.
- W2038267711 countsByYear W20382677112015 @default.
- W2038267711 countsByYear W20382677112017 @default.
- W2038267711 countsByYear W20382677112019 @default.
- W2038267711 countsByYear W20382677112020 @default.
- W2038267711 crossrefType "journal-article" @default.
- W2038267711 hasAuthorship W2038267711A5018424240 @default.
- W2038267711 hasAuthorship W2038267711A5060654735 @default.
- W2038267711 hasAuthorship W2038267711A5086748510 @default.
- W2038267711 hasConcept C120806208 @default.
- W2038267711 hasConcept C127313418 @default.
- W2038267711 hasConcept C151730666 @default.
- W2038267711 hasConcept C161509811 @default.
- W2038267711 hasConcept C17409809 @default.
- W2038267711 hasConcept C176055353 @default.
- W2038267711 hasConcept C183222429 @default.
- W2038267711 hasConcept C191897082 @default.
- W2038267711 hasConcept C192241223 @default.
- W2038267711 hasConcept C192562407 @default.
- W2038267711 hasConcept C199289684 @default.
- W2038267711 hasConcept C2776432453 @default.
- W2038267711 hasConcept C2779181077 @default.
- W2038267711 hasConcept C2779870107 @default.
- W2038267711 hasConcept C2781323139 @default.
- W2038267711 hasConcept C36986328 @default.
- W2038267711 hasConcept C42787717 @default.
- W2038267711 hasConcept C5900021 @default.
- W2038267711 hasConcept C59822182 @default.
- W2038267711 hasConcept C79605941 @default.
- W2038267711 hasConcept C86803240 @default.
- W2038267711 hasConceptScore W2038267711C120806208 @default.
- W2038267711 hasConceptScore W2038267711C127313418 @default.
- W2038267711 hasConceptScore W2038267711C151730666 @default.
- W2038267711 hasConceptScore W2038267711C161509811 @default.
- W2038267711 hasConceptScore W2038267711C17409809 @default.
- W2038267711 hasConceptScore W2038267711C176055353 @default.