Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038326972> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2038326972 abstract "Abstract The increasing complexities of wellbore geometry imply an increasing potential of damage resulting from downhole bit wear. Although the locations of critical bit wear can be difficult to predict, the quantification of the actual bit teeth/cutter wear is important to achieve reduced cost per foot and predictable bit failure. There is no acceptable universal mathematical model that describes bit wear accurately because of the complex nature of downhole conditions. Usually, either analytical models or real-time data analytics are used separately to estimate and predict bit wear. Combining both methods and using them simultaneously is an efficient way to address this limitation. This paper presents a new simple analytical bit wear model coupled with data analytics using real-time gamma ray data to suppress the uncertainties of the interacting formation properties and other intervening variables. The fractional bit wear of polycrystalline diamond compact (PDC) bit cutters is obtained from the geometric correlation between height loss and the cutter volume loss. The volume loss of cutters is assumed to be proportional to weight on bit (WOB), cutter sliding distance, rock strength, and rock quartz content. The paper presents a field example to predict and estimate the bit wear using actual data. Gamma ray and rate of penetration (ROP) data of the initial drilling section are used to train the model to quantify the influence of formation strength interaction with the analytical model. Then estimation of ROP using the new bit wear model was carried out using actual field drilling parameters. The calculated ROP profile closely matched with the actual data within reasonable accuracy of less than 5%. Specific procedures are proposed for effective prediction of ROP and bit life." @default.
- W2038326972 created "2016-06-24" @default.
- W2038326972 creator A5029183682 @default.
- W2038326972 creator A5080925229 @default.
- W2038326972 creator A5084246906 @default.
- W2038326972 creator A5088162267 @default.
- W2038326972 date "2014-05-21" @default.
- W2038326972 modified "2023-10-03" @default.
- W2038326972 title "An Analytical Model Coupled With Data Analytics to Estimate PDC Bit Wear" @default.
- W2038326972 cites W1964312654 @default.
- W2038326972 cites W1973371601 @default.
- W2038326972 cites W1989403019 @default.
- W2038326972 cites W2071908329 @default.
- W2038326972 cites W2079841886 @default.
- W2038326972 cites W2080590977 @default.
- W2038326972 cites W2501365774 @default.
- W2038326972 doi "https://doi.org/10.2118/169451-ms" @default.
- W2038326972 hasPublicationYear "2014" @default.
- W2038326972 type Work @default.
- W2038326972 sameAs 2038326972 @default.
- W2038326972 citedByCount "15" @default.
- W2038326972 countsByYear W20383269722016 @default.
- W2038326972 countsByYear W20383269722017 @default.
- W2038326972 countsByYear W20383269722018 @default.
- W2038326972 countsByYear W20383269722019 @default.
- W2038326972 countsByYear W20383269722021 @default.
- W2038326972 countsByYear W20383269722022 @default.
- W2038326972 countsByYear W20383269722023 @default.
- W2038326972 crossrefType "proceedings-article" @default.
- W2038326972 hasAuthorship W2038326972A5029183682 @default.
- W2038326972 hasAuthorship W2038326972A5080925229 @default.
- W2038326972 hasAuthorship W2038326972A5084246906 @default.
- W2038326972 hasAuthorship W2038326972A5088162267 @default.
- W2038326972 hasConcept C11413529 @default.
- W2038326972 hasConcept C117011727 @default.
- W2038326972 hasConcept C121332964 @default.
- W2038326972 hasConcept C127413603 @default.
- W2038326972 hasConcept C20556612 @default.
- W2038326972 hasConcept C25197100 @default.
- W2038326972 hasConcept C2776497017 @default.
- W2038326972 hasConcept C38652104 @default.
- W2038326972 hasConcept C41008148 @default.
- W2038326972 hasConcept C44154836 @default.
- W2038326972 hasConcept C62520636 @default.
- W2038326972 hasConcept C78519656 @default.
- W2038326972 hasConceptScore W2038326972C11413529 @default.
- W2038326972 hasConceptScore W2038326972C117011727 @default.
- W2038326972 hasConceptScore W2038326972C121332964 @default.
- W2038326972 hasConceptScore W2038326972C127413603 @default.
- W2038326972 hasConceptScore W2038326972C20556612 @default.
- W2038326972 hasConceptScore W2038326972C25197100 @default.
- W2038326972 hasConceptScore W2038326972C2776497017 @default.
- W2038326972 hasConceptScore W2038326972C38652104 @default.
- W2038326972 hasConceptScore W2038326972C41008148 @default.
- W2038326972 hasConceptScore W2038326972C44154836 @default.
- W2038326972 hasConceptScore W2038326972C62520636 @default.
- W2038326972 hasConceptScore W2038326972C78519656 @default.
- W2038326972 hasLocation W20383269721 @default.
- W2038326972 hasOpenAccess W2038326972 @default.
- W2038326972 hasPrimaryLocation W20383269721 @default.
- W2038326972 hasRelatedWork W1985189472 @default.
- W2038326972 hasRelatedWork W2131327528 @default.
- W2038326972 hasRelatedWork W2144738851 @default.
- W2038326972 hasRelatedWork W2150726154 @default.
- W2038326972 hasRelatedWork W2316833452 @default.
- W2038326972 hasRelatedWork W2323074520 @default.
- W2038326972 hasRelatedWork W2367544566 @default.
- W2038326972 hasRelatedWork W4214660495 @default.
- W2038326972 hasRelatedWork W4313007714 @default.
- W2038326972 hasRelatedWork W62834685 @default.
- W2038326972 isParatext "false" @default.
- W2038326972 isRetracted "false" @default.
- W2038326972 magId "2038326972" @default.
- W2038326972 workType "article" @default.