Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038392318> ?p ?o ?g. }
- W2038392318 endingPage "846" @default.
- W2038392318 startingPage "759" @default.
- W2038392318 abstract "Abstract The term dynamic stall refers to unsteady flow separation occurring on aerodynamic bodies, such as airfoils and wings, which execute an unsteady motion. The prediction of dynamic stall is important for flight vehicle, turbomachinery, and wind turbine applications. Due to the complicated flow physics of the dynamic stall phenomenon the industry has been forced to use empirical methods for its prediction. However, recent progress in computational methods and the tremendous increase in computing power has made possible the use of the full fluid dynamic governing equations for dynamic stall investigation and prediction in the design process. It is the objective of this review to present the major approaches and results obtained in recent years and to point out existing deficiencies and possibilities for improvements. To this end, potential flow, boundary layer, viscous–inviscid interaction, and Navier–Stokes methods are described. The most commonly used numerical schemes for their solution are briefly described. Turbulence models used for the computation of high Reynolds number turbulent flows, which are of primary interest to industry, are presented. The impact of transition from laminar to turbulent flow on the dynamic stall phenomenon is discussed and currently available methods for its prediction are summarized. The main computational results obtained for airfoil and wing dynamic stall and comparisons with available experimental measurements are presented. The review concludes with a discussion of existing deficiencies and possibilities for future improvements." @default.
- W2038392318 created "2016-06-24" @default.
- W2038392318 creator A5034872297 @default.
- W2038392318 creator A5089352844 @default.
- W2038392318 date "1998-04-01" @default.
- W2038392318 modified "2023-10-17" @default.
- W2038392318 title "Computational prediction of airfoil dynamic stall" @default.
- W2038392318 cites W1640006767 @default.
- W2038392318 cites W1677529154 @default.
- W2038392318 cites W1963791784 @default.
- W2038392318 cites W1964275668 @default.
- W2038392318 cites W1965977089 @default.
- W2038392318 cites W1966158133 @default.
- W2038392318 cites W1970225342 @default.
- W2038392318 cites W1970751807 @default.
- W2038392318 cites W1975096091 @default.
- W2038392318 cites W1977354538 @default.
- W2038392318 cites W1979028853 @default.
- W2038392318 cites W1979319343 @default.
- W2038392318 cites W1981202981 @default.
- W2038392318 cites W1984386812 @default.
- W2038392318 cites W1984536666 @default.
- W2038392318 cites W1985200612 @default.
- W2038392318 cites W1989999670 @default.
- W2038392318 cites W1991939296 @default.
- W2038392318 cites W1992512174 @default.
- W2038392318 cites W1992737670 @default.
- W2038392318 cites W1995099208 @default.
- W2038392318 cites W1997654684 @default.
- W2038392318 cites W1999822201 @default.
- W2038392318 cites W2001718958 @default.
- W2038392318 cites W2002335991 @default.
- W2038392318 cites W2003935561 @default.
- W2038392318 cites W2003997117 @default.
- W2038392318 cites W2004693540 @default.
- W2038392318 cites W2006021416 @default.
- W2038392318 cites W2012016362 @default.
- W2038392318 cites W2012654790 @default.
- W2038392318 cites W2015098871 @default.
- W2038392318 cites W2016432286 @default.
- W2038392318 cites W2017817792 @default.
- W2038392318 cites W2017833761 @default.
- W2038392318 cites W2018495453 @default.
- W2038392318 cites W2022088255 @default.
- W2038392318 cites W2030815858 @default.
- W2038392318 cites W2033160387 @default.
- W2038392318 cites W2033700136 @default.
- W2038392318 cites W2044079809 @default.
- W2038392318 cites W2047612590 @default.
- W2038392318 cites W2048409637 @default.
- W2038392318 cites W2049603617 @default.
- W2038392318 cites W2050377418 @default.
- W2038392318 cites W2051084996 @default.
- W2038392318 cites W2051823875 @default.
- W2038392318 cites W2055545159 @default.
- W2038392318 cites W2057150715 @default.
- W2038392318 cites W2059322163 @default.
- W2038392318 cites W2061561403 @default.
- W2038392318 cites W2061627473 @default.
- W2038392318 cites W2063907181 @default.
- W2038392318 cites W2066530720 @default.
- W2038392318 cites W2066938343 @default.
- W2038392318 cites W2075895609 @default.
- W2038392318 cites W2076077791 @default.
- W2038392318 cites W2080790806 @default.
- W2038392318 cites W2083592143 @default.
- W2038392318 cites W2086780914 @default.
- W2038392318 cites W2093292123 @default.
- W2038392318 cites W2095446443 @default.
- W2038392318 cites W2112176126 @default.
- W2038392318 cites W2119433364 @default.
- W2038392318 cites W2125802443 @default.
- W2038392318 cites W2128682492 @default.
- W2038392318 cites W2131765722 @default.
- W2038392318 cites W2133794189 @default.
- W2038392318 cites W2136318866 @default.
- W2038392318 cites W2142569217 @default.
- W2038392318 cites W2147302089 @default.
- W2038392318 cites W2151811619 @default.
- W2038392318 cites W2159901271 @default.
- W2038392318 cites W2161706192 @default.
- W2038392318 cites W2165378871 @default.
- W2038392318 cites W2331242654 @default.
- W2038392318 cites W2333460337 @default.
- W2038392318 cites W2334680813 @default.
- W2038392318 cites W2335092643 @default.
- W2038392318 cites W2493466703 @default.
- W2038392318 cites W2497445400 @default.
- W2038392318 cites W301929717 @default.
- W2038392318 cites W4234698039 @default.
- W2038392318 cites W4245037559 @default.
- W2038392318 cites W4376596376 @default.
- W2038392318 doi "https://doi.org/10.1016/s0376-0421(97)00012-2" @default.
- W2038392318 hasPublicationYear "1998" @default.
- W2038392318 type Work @default.
- W2038392318 sameAs 2038392318 @default.
- W2038392318 citedByCount "282" @default.
- W2038392318 countsByYear W20383923182012 @default.