Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038401118> ?p ?o ?g. }
- W2038401118 endingPage "1965" @default.
- W2038401118 startingPage "1957" @default.
- W2038401118 abstract "The job shop scheduling problem is one of the most important and complicated problems in machine scheduling. This problem is characterized as NP-hard. The high complexity of the problem makes it hard to find the optimal solution within reasonable time in most cases. Hence searching for approximate solutions in polynomial time instead of exact solutions at high cost is preferred for difficult instances of the problem. Meta-heuristic methods such as genetic algorithms are widely applied to find optimal or near-optimal solutions for the job shop scheduling problem. Parallelizing the genetic algorithms is one of the best approaches that can be used to enhance the performance of these algorithms. In this paper, we propose an agent-based parallel approach for the problem in which creating the initial population and parallelizing the genetic algorithm are carried out in an agent-based manner. Benchmark instances are used to investigate the performance of the proposed approach. The results show that this approach improves the efficiency." @default.
- W2038401118 created "2016-06-24" @default.
- W2038401118 creator A5040151359 @default.
- W2038401118 creator A5069884960 @default.
- W2038401118 date "2010-12-01" @default.
- W2038401118 modified "2023-10-03" @default.
- W2038401118 title "An agent-based parallel approach for the job shop scheduling problem with genetic algorithms" @default.
- W2038401118 cites W1503342284 @default.
- W2038401118 cites W1868841418 @default.
- W2038401118 cites W1984543024 @default.
- W2038401118 cites W1999118894 @default.
- W2038401118 cites W2006389447 @default.
- W2038401118 cites W2008759288 @default.
- W2038401118 cites W2011649121 @default.
- W2038401118 cites W2017773796 @default.
- W2038401118 cites W2018179003 @default.
- W2038401118 cites W2020639733 @default.
- W2038401118 cites W2023015815 @default.
- W2038401118 cites W2031356432 @default.
- W2038401118 cites W2041252124 @default.
- W2038401118 cites W2048687263 @default.
- W2038401118 cites W2059227280 @default.
- W2038401118 cites W2069642733 @default.
- W2038401118 cites W2081278763 @default.
- W2038401118 cites W2082295596 @default.
- W2038401118 cites W2085824412 @default.
- W2038401118 cites W2086814463 @default.
- W2038401118 cites W2088304441 @default.
- W2038401118 cites W2130272456 @default.
- W2038401118 cites W2138624981 @default.
- W2038401118 cites W2155387043 @default.
- W2038401118 cites W2170428215 @default.
- W2038401118 cites W3004796262 @default.
- W2038401118 doi "https://doi.org/10.1016/j.mcm.2010.04.019" @default.
- W2038401118 hasPublicationYear "2010" @default.
- W2038401118 type Work @default.
- W2038401118 sameAs 2038401118 @default.
- W2038401118 citedByCount "82" @default.
- W2038401118 countsByYear W20384011182012 @default.
- W2038401118 countsByYear W20384011182013 @default.
- W2038401118 countsByYear W20384011182014 @default.
- W2038401118 countsByYear W20384011182015 @default.
- W2038401118 countsByYear W20384011182016 @default.
- W2038401118 countsByYear W20384011182017 @default.
- W2038401118 countsByYear W20384011182018 @default.
- W2038401118 countsByYear W20384011182019 @default.
- W2038401118 countsByYear W20384011182020 @default.
- W2038401118 countsByYear W20384011182021 @default.
- W2038401118 countsByYear W20384011182022 @default.
- W2038401118 countsByYear W20384011182023 @default.
- W2038401118 crossrefType "journal-article" @default.
- W2038401118 hasAuthorship W2038401118A5040151359 @default.
- W2038401118 hasAuthorship W2038401118A5069884960 @default.
- W2038401118 hasConcept C107568181 @default.
- W2038401118 hasConcept C111919701 @default.
- W2038401118 hasConcept C11413529 @default.
- W2038401118 hasConcept C119857082 @default.
- W2038401118 hasConcept C126255220 @default.
- W2038401118 hasConcept C127456818 @default.
- W2038401118 hasConcept C13280743 @default.
- W2038401118 hasConcept C158336966 @default.
- W2038401118 hasConcept C185798385 @default.
- W2038401118 hasConcept C205649164 @default.
- W2038401118 hasConcept C206729178 @default.
- W2038401118 hasConcept C2777243215 @default.
- W2038401118 hasConcept C311688 @default.
- W2038401118 hasConcept C33923547 @default.
- W2038401118 hasConcept C41008148 @default.
- W2038401118 hasConcept C55416958 @default.
- W2038401118 hasConcept C68387754 @default.
- W2038401118 hasConcept C8880873 @default.
- W2038401118 hasConceptScore W2038401118C107568181 @default.
- W2038401118 hasConceptScore W2038401118C111919701 @default.
- W2038401118 hasConceptScore W2038401118C11413529 @default.
- W2038401118 hasConceptScore W2038401118C119857082 @default.
- W2038401118 hasConceptScore W2038401118C126255220 @default.
- W2038401118 hasConceptScore W2038401118C127456818 @default.
- W2038401118 hasConceptScore W2038401118C13280743 @default.
- W2038401118 hasConceptScore W2038401118C158336966 @default.
- W2038401118 hasConceptScore W2038401118C185798385 @default.
- W2038401118 hasConceptScore W2038401118C205649164 @default.
- W2038401118 hasConceptScore W2038401118C206729178 @default.
- W2038401118 hasConceptScore W2038401118C2777243215 @default.
- W2038401118 hasConceptScore W2038401118C311688 @default.
- W2038401118 hasConceptScore W2038401118C33923547 @default.
- W2038401118 hasConceptScore W2038401118C41008148 @default.
- W2038401118 hasConceptScore W2038401118C55416958 @default.
- W2038401118 hasConceptScore W2038401118C68387754 @default.
- W2038401118 hasConceptScore W2038401118C8880873 @default.
- W2038401118 hasIssue "11-12" @default.
- W2038401118 hasLocation W20384011181 @default.
- W2038401118 hasOpenAccess W2038401118 @default.
- W2038401118 hasPrimaryLocation W20384011181 @default.
- W2038401118 hasRelatedWork W1965627526 @default.
- W2038401118 hasRelatedWork W2055028614 @default.
- W2038401118 hasRelatedWork W2065941946 @default.
- W2038401118 hasRelatedWork W2088150091 @default.
- W2038401118 hasRelatedWork W2115356406 @default.