Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038438971> ?p ?o ?g. }
- W2038438971 endingPage "462" @default.
- W2038438971 startingPage "454" @default.
- W2038438971 abstract "The aggregation of proteins is tightly controlled in living systems, and misfolded proteins are normally removed before aggregation of the misfolded protein can occur. But for reasons not clearly understood, in some individuals this degradation process breaks down, and misfolded proteins accumulate in insoluble protein aggregates (amyloid deposits) over time. Of the many proteins expressed in humans, a small but growing number have been found to form the long, highly ordered β-sheet protein fibers that comprise amyloid deposits. Despite a lack of obvious sequence similarity, the amyloid forms of diverse proteins are strikingly similar, consisting of long, highly ordered insoluble fibers with a characteristic crossed β-sheet pattern. Amyloidogenesis has been the focus of intense basic and clinical research, because a high proportion of amyloidogenic proteins have been linked to common degenerative diseases, including Alzheimer’s disease, type II diabetes, and Parkinson’s disease.The apparent link between amyloidogenic proteins and disease was initially attributed to the amyloid form of the protein; however, increasing evidence suggests that the toxicity is due to intermediates generated during the assembly of amyloid fibers. These intermediates have been proposed to attack cells in a variety of ways, such as by generating inflammation, creating reactive oxygen species, and overloading the misfolded protein response pathway. One common, well-studied mechanism is the disruption of the plasma and organelle membranes.In this Account, we examine the early molecular-level events in the aggregation of the islet amyloid polypeptide (IAPP, also called amylin) and its ensuing disruption of membranes. IAPP is a 37-residue peptide secreted in conjunction with insulin; it is highly amyloidogenic and often found in amyloid deposits in type II diabetics. IAPP aggregates are highly toxic to the β-cells that produce insulin, and thus IAPP is believed to be one of the factors involved in the transition from early to later stages of type II diabetes. Using variants of IAPP that are combinations of toxic or non-toxic and amyloidogenic or nonamyloidogenic forms, we have shown that formation of amyloid fibers is a sufficient but not necessary condition for the disruption of β-cells. Instead, the ability to induce membrane disruption in model membranes appears to be related to the peptide’s ability to stabilize curvature in the membrane, which in turn is related to the depth of penetration in the membrane.Although many similarities exist between IAPP and other amyloidogenic proteins, one important difference appears to be the role of small oligomers in the assembly process of amyloid fibers. In many amyloidogenic proteins, small oligomers form a distinct metastable intermediate that is frequently the most toxic species; however, in IAPP, small oligomers appear to be transient and are rapidly converted to amyloid fibers. Moreover, the aggregation and toxicity of IAPP is controlled by other cofactors present in the secretory granule from which it is released, such as zinc and insulin, in a control mechanism that is somehow unbalanced in type II diabetics. Investigations into this process are likely to give clues to the mysterious origins of type II diabetes at the molecular level." @default.
- W2038438971 created "2016-06-24" @default.
- W2038438971 creator A5006414766 @default.
- W2038438971 creator A5016934136 @default.
- W2038438971 creator A5035360312 @default.
- W2038438971 date "2011-09-25" @default.
- W2038438971 modified "2023-10-02" @default.
- W2038438971 title "Membrane Disruption and Early Events in the Aggregation of the Diabetes Related Peptide IAPP from a Molecular Perspective" @default.
- W2038438971 cites W1608388154 @default.
- W2038438971 cites W1965863026 @default.
- W2038438971 cites W1967239474 @default.
- W2038438971 cites W1967530447 @default.
- W2038438971 cites W1970305190 @default.
- W2038438971 cites W1972535964 @default.
- W2038438971 cites W1976851725 @default.
- W2038438971 cites W1977614563 @default.
- W2038438971 cites W1980233706 @default.
- W2038438971 cites W1982077438 @default.
- W2038438971 cites W1982625489 @default.
- W2038438971 cites W1989451255 @default.
- W2038438971 cites W1990749733 @default.
- W2038438971 cites W1992513829 @default.
- W2038438971 cites W1994342334 @default.
- W2038438971 cites W1998062150 @default.
- W2038438971 cites W1998460697 @default.
- W2038438971 cites W2001138789 @default.
- W2038438971 cites W2006131003 @default.
- W2038438971 cites W2038079486 @default.
- W2038438971 cites W2053402937 @default.
- W2038438971 cites W2067008646 @default.
- W2038438971 cites W2069858728 @default.
- W2038438971 cites W2073577794 @default.
- W2038438971 cites W2077251905 @default.
- W2038438971 cites W2081005072 @default.
- W2038438971 cites W2082038580 @default.
- W2038438971 cites W2082186075 @default.
- W2038438971 cites W2091311712 @default.
- W2038438971 cites W2097259690 @default.
- W2038438971 cites W2098651156 @default.
- W2038438971 cites W2101731922 @default.
- W2038438971 cites W2104580232 @default.
- W2038438971 cites W2105051532 @default.
- W2038438971 cites W2106658644 @default.
- W2038438971 cites W2116489922 @default.
- W2038438971 cites W2128460405 @default.
- W2038438971 cites W2134909516 @default.
- W2038438971 cites W2139297571 @default.
- W2038438971 cites W2141035467 @default.
- W2038438971 cites W2145124130 @default.
- W2038438971 cites W2147226356 @default.
- W2038438971 cites W2148828302 @default.
- W2038438971 cites W2148869006 @default.
- W2038438971 doi "https://doi.org/10.1021/ar200189b" @default.
- W2038438971 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3272313" @default.
- W2038438971 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21942864" @default.
- W2038438971 hasPublicationYear "2011" @default.
- W2038438971 type Work @default.
- W2038438971 sameAs 2038438971 @default.
- W2038438971 citedByCount "316" @default.
- W2038438971 countsByYear W20384389712012 @default.
- W2038438971 countsByYear W20384389712013 @default.
- W2038438971 countsByYear W20384389712014 @default.
- W2038438971 countsByYear W20384389712015 @default.
- W2038438971 countsByYear W20384389712016 @default.
- W2038438971 countsByYear W20384389712017 @default.
- W2038438971 countsByYear W20384389712018 @default.
- W2038438971 countsByYear W20384389712019 @default.
- W2038438971 countsByYear W20384389712020 @default.
- W2038438971 countsByYear W20384389712021 @default.
- W2038438971 countsByYear W20384389712022 @default.
- W2038438971 countsByYear W20384389712023 @default.
- W2038438971 crossrefType "journal-article" @default.
- W2038438971 hasAuthorship W2038438971A5006414766 @default.
- W2038438971 hasAuthorship W2038438971A5016934136 @default.
- W2038438971 hasAuthorship W2038438971A5035360312 @default.
- W2038438971 hasBestOaLocation W20384389712 @default.
- W2038438971 hasConcept C12554922 @default.
- W2038438971 hasConcept C126322002 @default.
- W2038438971 hasConcept C134018914 @default.
- W2038438971 hasConcept C136238340 @default.
- W2038438971 hasConcept C144647389 @default.
- W2038438971 hasConcept C165220095 @default.
- W2038438971 hasConcept C177907266 @default.
- W2038438971 hasConcept C179104552 @default.
- W2038438971 hasConcept C180081513 @default.
- W2038438971 hasConcept C185592680 @default.
- W2038438971 hasConcept C204328495 @default.
- W2038438971 hasConcept C2777633098 @default.
- W2038438971 hasConcept C2779134260 @default.
- W2038438971 hasConcept C2779281246 @default.
- W2038438971 hasConcept C2780705028 @default.
- W2038438971 hasConcept C2909607560 @default.
- W2038438971 hasConcept C2994168385 @default.
- W2038438971 hasConcept C3019447875 @default.
- W2038438971 hasConcept C31705614 @default.
- W2038438971 hasConcept C41625074 @default.
- W2038438971 hasConcept C502032728 @default.
- W2038438971 hasConcept C55493867 @default.