Matches in SemOpenAlex for { <https://semopenalex.org/work/W203851224> ?p ?o ?g. }
- W203851224 endingPage "143" @default.
- W203851224 startingPage "81" @default.
- W203851224 abstract "In this chapter, numerical modeling background is introduced and a number of neural network (NN) applications developed for numerical weather prediction (NWP) models and climate simulation systems are presented. The hierarchy of numerical models describing weather and climate processes of different scales is introduced and discussed. The notion of hybrid models that combine deterministic physically based parts with statistical blocks is introduced. Several atmospheric and oceanic applications of the NN technique to produce statistical blocks for hybrid numerical models are introduced and discussed in detail. These applications include fast and accurate NN emulations of atmospheric radiation parameterizations and new NN-based convection parameterization for atmospheric models, and fast and accurate NN emulations of nonlinear wave-wave interaction parameterization for ocean wind wave models. The chapter contains an extensive list of references giving extended background and further detail to the interested reader on each examined topic. It can serve as a textbook and an introductory reading for students and beginner and advanced investigators interested in learning how to apply the NN emulation technique to different numerical modeling problems." @default.
- W203851224 created "2016-06-24" @default.
- W203851224 creator A5016699173 @default.
- W203851224 date "2013-01-01" @default.
- W203851224 modified "2023-10-18" @default.
- W203851224 title "Applications of NNs to Developing Hybrid Earth System Numerical Models for Climate and Weather" @default.
- W203851224 cites W1974038018 @default.
- W203851224 cites W1976753849 @default.
- W203851224 cites W1981723976 @default.
- W203851224 cites W1989660017 @default.
- W203851224 cites W2002096058 @default.
- W203851224 cites W2005535808 @default.
- W203851224 cites W2010341850 @default.
- W203851224 cites W2010498097 @default.
- W203851224 cites W2012407814 @default.
- W203851224 cites W2015772410 @default.
- W203851224 cites W2019411215 @default.
- W203851224 cites W2019457529 @default.
- W203851224 cites W2031152600 @default.
- W203851224 cites W2045272432 @default.
- W203851224 cites W2047421660 @default.
- W203851224 cites W2052786465 @default.
- W203851224 cites W2059756096 @default.
- W203851224 cites W2065339245 @default.
- W203851224 cites W2071644800 @default.
- W203851224 cites W2081917861 @default.
- W203851224 cites W2083307976 @default.
- W203851224 cites W2083339292 @default.
- W203851224 cites W2086661669 @default.
- W203851224 cites W2087532559 @default.
- W203851224 cites W2093756001 @default.
- W203851224 cites W2095924101 @default.
- W203851224 cites W2104251706 @default.
- W203851224 cites W2110796569 @default.
- W203851224 cites W2111586759 @default.
- W203851224 cites W2112219300 @default.
- W203851224 cites W2120949479 @default.
- W203851224 cites W2123313626 @default.
- W203851224 cites W2132742519 @default.
- W203851224 cites W2136498753 @default.
- W203851224 cites W2136991476 @default.
- W203851224 cites W2137534428 @default.
- W203851224 cites W2160252043 @default.
- W203851224 cites W2170874467 @default.
- W203851224 cites W2171270429 @default.
- W203851224 cites W2173251738 @default.
- W203851224 cites W2176178328 @default.
- W203851224 cites W2621014703 @default.
- W203851224 cites W4247197717 @default.
- W203851224 cites W4380837056 @default.
- W203851224 doi "https://doi.org/10.1007/978-94-007-6073-8_4" @default.
- W203851224 hasPublicationYear "2013" @default.
- W203851224 type Work @default.
- W203851224 sameAs 203851224 @default.
- W203851224 citedByCount "1" @default.
- W203851224 countsByYear W2038512242022 @default.
- W203851224 crossrefType "book-chapter" @default.
- W203851224 hasAuthorship W203851224A5016699173 @default.
- W203851224 hasConcept C111368507 @default.
- W203851224 hasConcept C118365302 @default.
- W203851224 hasConcept C127313418 @default.
- W203851224 hasConcept C132651083 @default.
- W203851224 hasConcept C147947694 @default.
- W203851224 hasConcept C149810388 @default.
- W203851224 hasConcept C153294291 @default.
- W203851224 hasConcept C154945302 @default.
- W203851224 hasConcept C162324750 @default.
- W203851224 hasConcept C168754636 @default.
- W203851224 hasConcept C205649164 @default.
- W203851224 hasConcept C21001229 @default.
- W203851224 hasConcept C41008148 @default.
- W203851224 hasConcept C50522688 @default.
- W203851224 hasConcept C50644808 @default.
- W203851224 hasConceptScore W203851224C111368507 @default.
- W203851224 hasConceptScore W203851224C118365302 @default.
- W203851224 hasConceptScore W203851224C127313418 @default.
- W203851224 hasConceptScore W203851224C132651083 @default.
- W203851224 hasConceptScore W203851224C147947694 @default.
- W203851224 hasConceptScore W203851224C149810388 @default.
- W203851224 hasConceptScore W203851224C153294291 @default.
- W203851224 hasConceptScore W203851224C154945302 @default.
- W203851224 hasConceptScore W203851224C162324750 @default.
- W203851224 hasConceptScore W203851224C168754636 @default.
- W203851224 hasConceptScore W203851224C205649164 @default.
- W203851224 hasConceptScore W203851224C21001229 @default.
- W203851224 hasConceptScore W203851224C41008148 @default.
- W203851224 hasConceptScore W203851224C50522688 @default.
- W203851224 hasConceptScore W203851224C50644808 @default.
- W203851224 hasLocation W2038512241 @default.
- W203851224 hasOpenAccess W203851224 @default.
- W203851224 hasPrimaryLocation W2038512241 @default.
- W203851224 hasRelatedWork W2008102633 @default.
- W203851224 hasRelatedWork W2012039284 @default.
- W203851224 hasRelatedWork W2019309461 @default.
- W203851224 hasRelatedWork W2176745846 @default.
- W203851224 hasRelatedWork W3093033454 @default.
- W203851224 hasRelatedWork W4200006094 @default.
- W203851224 hasRelatedWork W4287886605 @default.