Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038596520> ?p ?o ?g. }
- W2038596520 endingPage "2472" @default.
- W2038596520 startingPage "2459" @default.
- W2038596520 abstract "Natural image statistics plays an important role in image denoising, and various natural image priors, including gradient-based, sparse representation-based, and nonlocal self-similarity-based ones, have been widely studied and exploited for noise removal. In spite of the great success of many denoising algorithms, they tend to smooth the fine scale image textures when removing noise, degrading the image visual quality. To address this problem, in this paper, we propose a texture enhanced image denoising method by enforcing the gradient histogram of the denoised image to be close to a reference gradient histogram of the original image. Given the reference gradient histogram, a novel gradient histogram preservation (GHP) algorithm is developed to enhance the texture structures while removing noise. Two region-based variants of GHP are proposed for the denoising of images consisting of regions with different textures. An algorithm is also developed to effectively estimate the reference gradient histogram from the noisy observation of the unknown image. Our experimental results demonstrate that the proposed GHP algorithm can well preserve the texture appearance in the denoised images, making them look more natural." @default.
- W2038596520 created "2016-06-24" @default.
- W2038596520 creator A5018318136 @default.
- W2038596520 creator A5036684787 @default.
- W2038596520 creator A5088155909 @default.
- W2038596520 creator A5088858645 @default.
- W2038596520 date "2014-06-01" @default.
- W2038596520 modified "2023-09-30" @default.
- W2038596520 title "Gradient Histogram Estimation and Preservation for Texture Enhanced Image Denoising" @default.
- W2038596520 cites W1973207753 @default.
- W2038596520 cites W1978749115 @default.
- W2038596520 cites W1990147331 @default.
- W2038596520 cites W1991704421 @default.
- W2038596520 cites W1994281301 @default.
- W2038596520 cites W2008357395 @default.
- W2038596520 cites W2009548700 @default.
- W2038596520 cites W2021262032 @default.
- W2038596520 cites W2032533296 @default.
- W2038596520 cites W2036682493 @default.
- W2038596520 cites W2037642501 @default.
- W2038596520 cites W2056370875 @default.
- W2038596520 cites W2058333183 @default.
- W2038596520 cites W2071005004 @default.
- W2038596520 cites W2085692415 @default.
- W2038596520 cites W2100705753 @default.
- W2038596520 cites W2103311002 @default.
- W2038596520 cites W2103559027 @default.
- W2038596520 cites W2108082645 @default.
- W2038596520 cites W2110253629 @default.
- W2038596520 cites W2112391032 @default.
- W2038596520 cites W2113945798 @default.
- W2038596520 cites W2115706991 @default.
- W2038596520 cites W2131686571 @default.
- W2038596520 cites W2132504201 @default.
- W2038596520 cites W2133665775 @default.
- W2038596520 cites W2136396015 @default.
- W2038596520 cites W2138461515 @default.
- W2038596520 cites W2141983208 @default.
- W2038596520 cites W2151452149 @default.
- W2038596520 cites W2152100107 @default.
- W2038596520 cites W2153663612 @default.
- W2038596520 cites W2154571593 @default.
- W2038596520 cites W2156438113 @default.
- W2038596520 cites W2163112044 @default.
- W2038596520 cites W2167053624 @default.
- W2038596520 cites W2171323859 @default.
- W2038596520 cites W2172275395 @default.
- W2038596520 cites W2536599074 @default.
- W2038596520 cites W3104720471 @default.
- W2038596520 cites W3106359998 @default.
- W2038596520 cites W3122764147 @default.
- W2038596520 cites W4214815024 @default.
- W2038596520 doi "https://doi.org/10.1109/tip.2014.2316423" @default.
- W2038596520 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24733013" @default.
- W2038596520 hasPublicationYear "2014" @default.
- W2038596520 type Work @default.
- W2038596520 sameAs 2038596520 @default.
- W2038596520 citedByCount "99" @default.
- W2038596520 countsByYear W20385965202014 @default.
- W2038596520 countsByYear W20385965202015 @default.
- W2038596520 countsByYear W20385965202016 @default.
- W2038596520 countsByYear W20385965202017 @default.
- W2038596520 countsByYear W20385965202018 @default.
- W2038596520 countsByYear W20385965202019 @default.
- W2038596520 countsByYear W20385965202020 @default.
- W2038596520 countsByYear W20385965202021 @default.
- W2038596520 countsByYear W20385965202022 @default.
- W2038596520 countsByYear W20385965202023 @default.
- W2038596520 crossrefType "journal-article" @default.
- W2038596520 hasAuthorship W2038596520A5018318136 @default.
- W2038596520 hasAuthorship W2038596520A5036684787 @default.
- W2038596520 hasAuthorship W2038596520A5088155909 @default.
- W2038596520 hasAuthorship W2038596520A5088858645 @default.
- W2038596520 hasBestOaLocation W20385965202 @default.
- W2038596520 hasConcept C101453961 @default.
- W2038596520 hasConcept C115961682 @default.
- W2038596520 hasConcept C127449775 @default.
- W2038596520 hasConcept C136943445 @default.
- W2038596520 hasConcept C153180895 @default.
- W2038596520 hasConcept C154945302 @default.
- W2038596520 hasConcept C163294075 @default.
- W2038596520 hasConcept C182037307 @default.
- W2038596520 hasConcept C30387639 @default.
- W2038596520 hasConcept C31972630 @default.
- W2038596520 hasConcept C33923547 @default.
- W2038596520 hasConcept C41008148 @default.
- W2038596520 hasConcept C53533937 @default.
- W2038596520 hasConcept C62725073 @default.
- W2038596520 hasConcept C63099799 @default.
- W2038596520 hasConcept C9417928 @default.
- W2038596520 hasConcept C99498987 @default.
- W2038596520 hasConceptScore W2038596520C101453961 @default.
- W2038596520 hasConceptScore W2038596520C115961682 @default.
- W2038596520 hasConceptScore W2038596520C127449775 @default.
- W2038596520 hasConceptScore W2038596520C136943445 @default.
- W2038596520 hasConceptScore W2038596520C153180895 @default.
- W2038596520 hasConceptScore W2038596520C154945302 @default.
- W2038596520 hasConceptScore W2038596520C163294075 @default.