Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038683990> ?p ?o ?g. }
- W2038683990 endingPage "1517" @default.
- W2038683990 startingPage "1473" @default.
- W2038683990 abstract "The Liapunov method is celebrated for its strength to establish strong decay of solutions of damped equations. Extensions to infinite dimensional settings have been studied by several authors (see e.g. Haraux, 1991 [11], and Komornik and Zuazua, 1990 [17] and references therein). Results on optimal energy decay rates under general conditions of the feedback is far from being complete. The purpose of this paper is to show that general dissipative vibrating systems have structural properties due to dissipation. We present a general approach based on convexity arguments to establish sharp optimal or quasi-optimal upper energy decay rates for these systems, and on comparison principles based on the dissipation property, and interpolation inequalities (in the infinite dimensional case) for lower bounds of the energy. We stress the fact that this method works for finite as well as infinite dimensional vibrating systems and as well as for applications to semi-discretized nonlinear damped vibrating PDE's. A part of this approach has been introduced in Alabau-Boussouira (2004, 2005) [1], [2]. In the present paper, we identify a new, simple and explicit criteria to select a class of nonlinear feedbacks, for which we prove a simplified explicit energy decay formula comparatively to the more general but also more complex formula we give in Alabau-Boussouira (2004, 2005) [1], [2]. Moreover, we prove optimality of the decay rates for this class, in the finite dimensional case. This class includes a wide range of feedbacks, ranging from very weak nonlinear dissipation (exponentially decaying in a neighborhood of zero), to polynomial, or polynomial-logarithmic decaying feedbacks at the origin. In the infinite dimensional case, we establish a comparison principle on the energy of sufficiently smooth solutions through the dissipation relation. This principle relies on suitable interpolation inequalities. It allows us to give lower bounds for the energy of smooth initial data for the one-dimensional wave equation with a distributed polynomial damping, which improves Haraux (1995) [12] lower estimate of the energy for this case. We also establish lower bounds in the multi-dimensional case for sufficiently smooth solutions when such solutions exist. We further mention applications of these various results to several classes of PDE's, namely: the locally and boundary damped multi-dimensional wave equation, the locally damped plate equation and the globally damped coupled Timoshenko beams system but it applies to several other examples. Furthermore, we show that these optimal energy decay results apply to finite dimensional systems obtained from spatial discretization of infinite dimensional damped systems. We illustrate these results on the one-dimensional locally damped wave and plate equations discretized by finite differences and give the optimal energy decay rates for these two examples. These optimal rates are not uniform with respect to the discretization parameter. We also discuss and explain why optimality results have to be stated differently for feedbacks close to linear behavior at the origin." @default.
- W2038683990 created "2016-06-24" @default.
- W2038683990 creator A5084799353 @default.
- W2038683990 date "2010-03-01" @default.
- W2038683990 modified "2023-10-13" @default.
- W2038683990 title "A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems" @default.
- W2038683990 cites W1137184376 @default.
- W2038683990 cites W1973648528 @default.
- W2038683990 cites W1992627933 @default.
- W2038683990 cites W1997419506 @default.
- W2038683990 cites W2001156598 @default.
- W2038683990 cites W2011232312 @default.
- W2038683990 cites W2020899673 @default.
- W2038683990 cites W2023542822 @default.
- W2038683990 cites W2026523808 @default.
- W2038683990 cites W2031521898 @default.
- W2038683990 cites W2033517841 @default.
- W2038683990 cites W2038580584 @default.
- W2038683990 cites W2041665550 @default.
- W2038683990 cites W2060499935 @default.
- W2038683990 cites W2065907001 @default.
- W2038683990 cites W2081929551 @default.
- W2038683990 cites W2087574051 @default.
- W2038683990 cites W2105953118 @default.
- W2038683990 cites W2127464980 @default.
- W2038683990 cites W2128004971 @default.
- W2038683990 cites W4302386106 @default.
- W2038683990 doi "https://doi.org/10.1016/j.jde.2009.12.005" @default.
- W2038683990 hasPublicationYear "2010" @default.
- W2038683990 type Work @default.
- W2038683990 sameAs 2038683990 @default.
- W2038683990 citedByCount "56" @default.
- W2038683990 countsByYear W20386839902012 @default.
- W2038683990 countsByYear W20386839902013 @default.
- W2038683990 countsByYear W20386839902014 @default.
- W2038683990 countsByYear W20386839902015 @default.
- W2038683990 countsByYear W20386839902016 @default.
- W2038683990 countsByYear W20386839902017 @default.
- W2038683990 countsByYear W20386839902018 @default.
- W2038683990 countsByYear W20386839902019 @default.
- W2038683990 countsByYear W20386839902020 @default.
- W2038683990 countsByYear W20386839902021 @default.
- W2038683990 countsByYear W20386839902022 @default.
- W2038683990 countsByYear W20386839902023 @default.
- W2038683990 crossrefType "journal-article" @default.
- W2038683990 hasAuthorship W2038683990A5084799353 @default.
- W2038683990 hasConcept C105795698 @default.
- W2038683990 hasConcept C106159729 @default.
- W2038683990 hasConcept C121332964 @default.
- W2038683990 hasConcept C134306372 @default.
- W2038683990 hasConcept C135402231 @default.
- W2038683990 hasConcept C158622935 @default.
- W2038683990 hasConcept C159985019 @default.
- W2038683990 hasConcept C162324750 @default.
- W2038683990 hasConcept C186370098 @default.
- W2038683990 hasConcept C192562407 @default.
- W2038683990 hasConcept C204323151 @default.
- W2038683990 hasConcept C28826006 @default.
- W2038683990 hasConcept C33923547 @default.
- W2038683990 hasConcept C62520636 @default.
- W2038683990 hasConcept C72134830 @default.
- W2038683990 hasConcept C73000952 @default.
- W2038683990 hasConcept C77553402 @default.
- W2038683990 hasConcept C97355855 @default.
- W2038683990 hasConcept C99692599 @default.
- W2038683990 hasConceptScore W2038683990C105795698 @default.
- W2038683990 hasConceptScore W2038683990C106159729 @default.
- W2038683990 hasConceptScore W2038683990C121332964 @default.
- W2038683990 hasConceptScore W2038683990C134306372 @default.
- W2038683990 hasConceptScore W2038683990C135402231 @default.
- W2038683990 hasConceptScore W2038683990C158622935 @default.
- W2038683990 hasConceptScore W2038683990C159985019 @default.
- W2038683990 hasConceptScore W2038683990C162324750 @default.
- W2038683990 hasConceptScore W2038683990C186370098 @default.
- W2038683990 hasConceptScore W2038683990C192562407 @default.
- W2038683990 hasConceptScore W2038683990C204323151 @default.
- W2038683990 hasConceptScore W2038683990C28826006 @default.
- W2038683990 hasConceptScore W2038683990C33923547 @default.
- W2038683990 hasConceptScore W2038683990C62520636 @default.
- W2038683990 hasConceptScore W2038683990C72134830 @default.
- W2038683990 hasConceptScore W2038683990C73000952 @default.
- W2038683990 hasConceptScore W2038683990C77553402 @default.
- W2038683990 hasConceptScore W2038683990C97355855 @default.
- W2038683990 hasConceptScore W2038683990C99692599 @default.
- W2038683990 hasIssue "6" @default.
- W2038683990 hasLocation W20386839901 @default.
- W2038683990 hasLocation W20386839902 @default.
- W2038683990 hasLocation W20386839903 @default.
- W2038683990 hasOpenAccess W2038683990 @default.
- W2038683990 hasPrimaryLocation W20386839901 @default.
- W2038683990 hasRelatedWork W1992244398 @default.
- W2038683990 hasRelatedWork W2036915488 @default.
- W2038683990 hasRelatedWork W2066249546 @default.
- W2038683990 hasRelatedWork W2092244978 @default.
- W2038683990 hasRelatedWork W2385030590 @default.
- W2038683990 hasRelatedWork W2623225148 @default.
- W2038683990 hasRelatedWork W2734680054 @default.
- W2038683990 hasRelatedWork W2767793898 @default.