Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038821427> ?p ?o ?g. }
- W2038821427 endingPage "291" @default.
- W2038821427 startingPage "283" @default.
- W2038821427 abstract "In this research the effect of physical predictors for the electrode based thermal therapy were considered and their effect on the final achieved temperature was quantified. For this purpose 6 predictors that may affect the temperature were studied. Knowledge of temperature inside the domain determines the extent of thermal damage in the domain. For the particular case of electrode based thermal therapy, a prediction model based on the regression analysis can be of immense importance in providing a quick and cost effective way to predict approximate temperature that would be achieved inside the computational domain. The regression model based on the physical predictors in an ideal situation can eradicate the need to solve complex electro-thermal equations for the prediction of temperature. In the first phase, a multiple regression model assuming a linear relationship between six independent variables and maximum achieved temperature as dependent variable or response was considered to best fit the observed values. A dummy variable was incorporated in the model to categorize the data for tissue and tumor. It was observed that multiple linear regression model could explain 82% of the variation in the observed data. In order to obtain a better prediction model, regression diagnostics were carried out and a modified model was obtained catering to the inherent nonlinear dependence of response variable on some variables. It was concluded that for electrode based thermal therapy improved regression model provided a marked improvement in terms of reliability of prediction over the original multiple linear regression model. Modified model was able to explain approximately 90% of the variation in observed data compared to 82% variation in data explained by the original model. Finally, it was revealed that as opposed to simulation software, the proposed regression model presents itself as being cheap, economical and quick alternative which can provide an estimate of the maximum temperature achievable inside the biological tissue." @default.
- W2038821427 created "2016-06-24" @default.
- W2038821427 creator A5031091803 @default.
- W2038821427 creator A5072826731 @default.
- W2038821427 date "2013-09-01" @default.
- W2038821427 modified "2023-09-23" @default.
- W2038821427 title "Statistical modeling of electrode based thermal therapy with Taguchi based multiple regression" @default.
- W2038821427 cites W1494747370 @default.
- W2038821427 cites W1497001479 @default.
- W2038821427 cites W1535277906 @default.
- W2038821427 cites W1980365520 @default.
- W2038821427 cites W1983024283 @default.
- W2038821427 cites W1991668437 @default.
- W2038821427 cites W1999280805 @default.
- W2038821427 cites W1999334601 @default.
- W2038821427 cites W2000144812 @default.
- W2038821427 cites W2002819872 @default.
- W2038821427 cites W2002910401 @default.
- W2038821427 cites W2009346333 @default.
- W2038821427 cites W2009937379 @default.
- W2038821427 cites W2017072283 @default.
- W2038821427 cites W2024422046 @default.
- W2038821427 cites W2027683586 @default.
- W2038821427 cites W2030114401 @default.
- W2038821427 cites W2032347070 @default.
- W2038821427 cites W2040826435 @default.
- W2038821427 cites W2041248721 @default.
- W2038821427 cites W2042474207 @default.
- W2038821427 cites W2043402257 @default.
- W2038821427 cites W2047351031 @default.
- W2038821427 cites W2053202925 @default.
- W2038821427 cites W2064700817 @default.
- W2038821427 cites W2070611628 @default.
- W2038821427 cites W2072237271 @default.
- W2038821427 cites W2083955053 @default.
- W2038821427 cites W2088186053 @default.
- W2038821427 cites W2094118554 @default.
- W2038821427 cites W2094979472 @default.
- W2038821427 cites W2109171921 @default.
- W2038821427 cites W2121943483 @default.
- W2038821427 cites W2124954644 @default.
- W2038821427 cites W2126263690 @default.
- W2038821427 cites W2130020523 @default.
- W2038821427 cites W2131388124 @default.
- W2038821427 cites W2136217449 @default.
- W2038821427 cites W2139131157 @default.
- W2038821427 cites W2148264035 @default.
- W2038821427 cites W2153420770 @default.
- W2038821427 cites W2155777484 @default.
- W2038821427 cites W2157404766 @default.
- W2038821427 cites W2169884733 @default.
- W2038821427 cites W226176070 @default.
- W2038821427 cites W2319962314 @default.
- W2038821427 cites W276691513 @default.
- W2038821427 cites W4239526824 @default.
- W2038821427 cites W85990683 @default.
- W2038821427 doi "https://doi.org/10.1016/j.ijthermalsci.2013.03.014" @default.
- W2038821427 hasPublicationYear "2013" @default.
- W2038821427 type Work @default.
- W2038821427 sameAs 2038821427 @default.
- W2038821427 citedByCount "26" @default.
- W2038821427 countsByYear W20388214272014 @default.
- W2038821427 countsByYear W20388214272015 @default.
- W2038821427 countsByYear W20388214272016 @default.
- W2038821427 countsByYear W20388214272017 @default.
- W2038821427 countsByYear W20388214272018 @default.
- W2038821427 countsByYear W20388214272019 @default.
- W2038821427 countsByYear W20388214272023 @default.
- W2038821427 crossrefType "journal-article" @default.
- W2038821427 hasAuthorship W2038821427A5031091803 @default.
- W2038821427 hasAuthorship W2038821427A5072826731 @default.
- W2038821427 hasConcept C105795698 @default.
- W2038821427 hasConcept C120068334 @default.
- W2038821427 hasConcept C152877465 @default.
- W2038821427 hasConcept C27574286 @default.
- W2038821427 hasConcept C32224588 @default.
- W2038821427 hasConcept C33923547 @default.
- W2038821427 hasConcept C41008148 @default.
- W2038821427 hasConcept C48921125 @default.
- W2038821427 hasConcept C83469408 @default.
- W2038821427 hasConcept C83546350 @default.
- W2038821427 hasConceptScore W2038821427C105795698 @default.
- W2038821427 hasConceptScore W2038821427C120068334 @default.
- W2038821427 hasConceptScore W2038821427C152877465 @default.
- W2038821427 hasConceptScore W2038821427C27574286 @default.
- W2038821427 hasConceptScore W2038821427C32224588 @default.
- W2038821427 hasConceptScore W2038821427C33923547 @default.
- W2038821427 hasConceptScore W2038821427C41008148 @default.
- W2038821427 hasConceptScore W2038821427C48921125 @default.
- W2038821427 hasConceptScore W2038821427C83469408 @default.
- W2038821427 hasConceptScore W2038821427C83546350 @default.
- W2038821427 hasLocation W20388214271 @default.
- W2038821427 hasOpenAccess W2038821427 @default.
- W2038821427 hasPrimaryLocation W20388214271 @default.
- W2038821427 hasRelatedWork W2043824532 @default.
- W2038821427 hasRelatedWork W2048754675 @default.
- W2038821427 hasRelatedWork W2375721435 @default.
- W2038821427 hasRelatedWork W2886532972 @default.