Matches in SemOpenAlex for { <https://semopenalex.org/work/W2038895760> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2038895760 abstract "Image correlation matching is a tracking method that searched a region most approximate to the target template based on the correlation measure between two images. Because there is no need to segment the image, and the computation of this method is little. Image correlation matching is a basic method of target tracking. This paper mainly studies the image matching algorithm of gray scale image, which precision is at sub-pixel level. The matching algorithm used in this paper is SAD (Sum of Absolute Difference) method. This method excels in real-time systems because of its low computation complexity. The SAD method is introduced firstly and the most frequently used sub-pixel fitting algorithms are introduced at the meantime. These fitting algorithms can’t be used in real-time systems because they are too complex. However, target tracking often requires high real-time performance, we put forward a fitting algorithm named paraboloidal fitting algorithm based on the consideration above, this algorithm is simple and realized easily in real-time system. The result of this algorithm is compared with that of surface fitting algorithm through image matching simulation. By comparison, the precision difference between these two algorithms is little, it’s less than 0.01pixel. In order to research the influence of target rotation on precision of image matching, the experiment of camera rotation was carried on. The detector used in the camera is a CMOS detector. It is fixed to an arc pendulum table, take pictures when the camera rotated different angles. Choose a subarea in the original picture as the template, and search the best matching spot using image matching algorithm mentioned above. The result shows that the matching error is bigger when the target rotation angle is larger. It’s an approximate linear relation. Finally, the influence of noise on matching precision was researched. Gaussian noise and pepper and salt noise were added in the image respectively, and the image was processed by mean filter and median filter, then image matching was processed. The result show that when the noise is little, mean filter and median filter can achieve a good result. But when the noise density of salt and pepper noise is bigger than 0.4, or the variance of Gaussian noise is bigger than 0.0015, the result of image matching will be wrong." @default.
- W2038895760 created "2016-06-24" @default.
- W2038895760 creator A5000793205 @default.
- W2038895760 creator A5031870274 @default.
- W2038895760 creator A5050613147 @default.
- W2038895760 creator A5069548541 @default.
- W2038895760 date "2015-03-04" @default.
- W2038895760 modified "2023-09-23" @default.
- W2038895760 title "Study of image matching algorithm and sub-pixel fitting algorithm in target tracking" @default.
- W2038895760 cites W2045725879 @default.
- W2038895760 doi "https://doi.org/10.1117/12.2178353" @default.
- W2038895760 hasPublicationYear "2015" @default.
- W2038895760 type Work @default.
- W2038895760 sameAs 2038895760 @default.
- W2038895760 citedByCount "0" @default.
- W2038895760 crossrefType "proceedings-article" @default.
- W2038895760 hasAuthorship W2038895760A5000793205 @default.
- W2038895760 hasAuthorship W2038895760A5031870274 @default.
- W2038895760 hasAuthorship W2038895760A5050613147 @default.
- W2038895760 hasAuthorship W2038895760A5069548541 @default.
- W2038895760 hasConcept C105795698 @default.
- W2038895760 hasConcept C11413529 @default.
- W2038895760 hasConcept C115961682 @default.
- W2038895760 hasConcept C154945302 @default.
- W2038895760 hasConcept C15744967 @default.
- W2038895760 hasConcept C158096908 @default.
- W2038895760 hasConcept C160633673 @default.
- W2038895760 hasConcept C165064840 @default.
- W2038895760 hasConcept C19417346 @default.
- W2038895760 hasConcept C2775936607 @default.
- W2038895760 hasConcept C31972630 @default.
- W2038895760 hasConcept C33923547 @default.
- W2038895760 hasConcept C41008148 @default.
- W2038895760 hasConcept C45374587 @default.
- W2038895760 hasConcept C61455927 @default.
- W2038895760 hasConcept C74050887 @default.
- W2038895760 hasConceptScore W2038895760C105795698 @default.
- W2038895760 hasConceptScore W2038895760C11413529 @default.
- W2038895760 hasConceptScore W2038895760C115961682 @default.
- W2038895760 hasConceptScore W2038895760C154945302 @default.
- W2038895760 hasConceptScore W2038895760C15744967 @default.
- W2038895760 hasConceptScore W2038895760C158096908 @default.
- W2038895760 hasConceptScore W2038895760C160633673 @default.
- W2038895760 hasConceptScore W2038895760C165064840 @default.
- W2038895760 hasConceptScore W2038895760C19417346 @default.
- W2038895760 hasConceptScore W2038895760C2775936607 @default.
- W2038895760 hasConceptScore W2038895760C31972630 @default.
- W2038895760 hasConceptScore W2038895760C33923547 @default.
- W2038895760 hasConceptScore W2038895760C41008148 @default.
- W2038895760 hasConceptScore W2038895760C45374587 @default.
- W2038895760 hasConceptScore W2038895760C61455927 @default.
- W2038895760 hasConceptScore W2038895760C74050887 @default.
- W2038895760 hasLocation W20388957601 @default.
- W2038895760 hasOpenAccess W2038895760 @default.
- W2038895760 hasPrimaryLocation W20388957601 @default.
- W2038895760 hasRelatedWork W1965432195 @default.
- W2038895760 hasRelatedWork W1995188412 @default.
- W2038895760 hasRelatedWork W2002310849 @default.
- W2038895760 hasRelatedWork W2040854736 @default.
- W2038895760 hasRelatedWork W2054235656 @default.
- W2038895760 hasRelatedWork W2078090283 @default.
- W2038895760 hasRelatedWork W2361115199 @default.
- W2038895760 hasRelatedWork W2607572884 @default.
- W2038895760 hasRelatedWork W2908250106 @default.
- W2038895760 hasRelatedWork W4220789584 @default.
- W2038895760 isParatext "false" @default.
- W2038895760 isRetracted "false" @default.
- W2038895760 magId "2038895760" @default.
- W2038895760 workType "article" @default.