Matches in SemOpenAlex for { <https://semopenalex.org/work/W2039032840> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2039032840 endingPage "120" @default.
- W2039032840 startingPage "114" @default.
- W2039032840 abstract "Kernel Principal Component Analysis (PCA) has proven a powerful tool for nonlinear feature extraction, and is often applied as a pre-processing step for classification algorithms. In denoising applications Kernel PCA provides the basis for dimensionality reduction, prior to the so-called pre-image problem where denoised feature space points are mapped back into input space. This problem is inherently ill-posed due to the non-bijective feature space mapping. We present a semi-supervised denoising scheme based on kernel PCA and the pre-image problem, where class labels on a subset of the data points are used to improve the denoising. Moreover, by warping the Reproducing Kernel Hilbert Space (RKHS) we also account for the intrinsic manifold structure yielding a Kernel PCA basis that also benefit from unlabeled data points. Our two main contributions are; (1) a generalization of Kernel PCA by incorporating a loss term, leading to an iterative algorithm for finding orthonormal components biased by the class labels, and (2) a fixed-point iteration for solving the pre-image problem based on a manifold warped RKHS. We prove viability of the proposed methods on both synthetic data and images from The Amsterdam Library of Object Images (Geusebroek et al., 2005) [7]." @default.
- W2039032840 created "2016-06-24" @default.
- W2039032840 creator A5018292103 @default.
- W2039032840 creator A5029291295 @default.
- W2039032840 creator A5064854204 @default.
- W2039032840 date "2014-11-01" @default.
- W2039032840 modified "2023-10-13" @default.
- W2039032840 title "Denoising by semi-supervised kernel PCA preimaging" @default.
- W2039032840 cites W1588174150 @default.
- W2039032840 cites W1675973698 @default.
- W2039032840 cites W1875445194 @default.
- W2039032840 cites W2014614335 @default.
- W2039032840 cites W2064942839 @default.
- W2039032840 cites W2105433369 @default.
- W2039032840 cites W2105732805 @default.
- W2039032840 cites W2111557120 @default.
- W2039032840 cites W2132773116 @default.
- W2039032840 cites W2140095548 @default.
- W2039032840 cites W2145862222 @default.
- W2039032840 cites W2148029428 @default.
- W2039032840 cites W2169945149 @default.
- W2039032840 cites W2623172142 @default.
- W2039032840 doi "https://doi.org/10.1016/j.patrec.2014.06.015" @default.
- W2039032840 hasPublicationYear "2014" @default.
- W2039032840 type Work @default.
- W2039032840 sameAs 2039032840 @default.
- W2039032840 citedByCount "7" @default.
- W2039032840 countsByYear W20390328402015 @default.
- W2039032840 countsByYear W20390328402016 @default.
- W2039032840 countsByYear W20390328402017 @default.
- W2039032840 countsByYear W20390328402019 @default.
- W2039032840 countsByYear W20390328402020 @default.
- W2039032840 crossrefType "journal-article" @default.
- W2039032840 hasAuthorship W2039032840A5018292103 @default.
- W2039032840 hasAuthorship W2039032840A5029291295 @default.
- W2039032840 hasAuthorship W2039032840A5064854204 @default.
- W2039032840 hasConcept C114614502 @default.
- W2039032840 hasConcept C121332964 @default.
- W2039032840 hasConcept C122280245 @default.
- W2039032840 hasConcept C12267149 @default.
- W2039032840 hasConcept C134306372 @default.
- W2039032840 hasConcept C134517425 @default.
- W2039032840 hasConcept C153180895 @default.
- W2039032840 hasConcept C154945302 @default.
- W2039032840 hasConcept C182335926 @default.
- W2039032840 hasConcept C27438332 @default.
- W2039032840 hasConcept C33923547 @default.
- W2039032840 hasConcept C41008148 @default.
- W2039032840 hasConcept C5806529 @default.
- W2039032840 hasConcept C62520636 @default.
- W2039032840 hasConcept C62799726 @default.
- W2039032840 hasConcept C70518039 @default.
- W2039032840 hasConcept C74193536 @default.
- W2039032840 hasConcept C80884492 @default.
- W2039032840 hasConceptScore W2039032840C114614502 @default.
- W2039032840 hasConceptScore W2039032840C121332964 @default.
- W2039032840 hasConceptScore W2039032840C122280245 @default.
- W2039032840 hasConceptScore W2039032840C12267149 @default.
- W2039032840 hasConceptScore W2039032840C134306372 @default.
- W2039032840 hasConceptScore W2039032840C134517425 @default.
- W2039032840 hasConceptScore W2039032840C153180895 @default.
- W2039032840 hasConceptScore W2039032840C154945302 @default.
- W2039032840 hasConceptScore W2039032840C182335926 @default.
- W2039032840 hasConceptScore W2039032840C27438332 @default.
- W2039032840 hasConceptScore W2039032840C33923547 @default.
- W2039032840 hasConceptScore W2039032840C41008148 @default.
- W2039032840 hasConceptScore W2039032840C5806529 @default.
- W2039032840 hasConceptScore W2039032840C62520636 @default.
- W2039032840 hasConceptScore W2039032840C62799726 @default.
- W2039032840 hasConceptScore W2039032840C70518039 @default.
- W2039032840 hasConceptScore W2039032840C74193536 @default.
- W2039032840 hasConceptScore W2039032840C80884492 @default.
- W2039032840 hasLocation W20390328401 @default.
- W2039032840 hasOpenAccess W2039032840 @default.
- W2039032840 hasPrimaryLocation W20390328401 @default.
- W2039032840 hasRelatedWork W1756633271 @default.
- W2039032840 hasRelatedWork W1998640076 @default.
- W2039032840 hasRelatedWork W2003659172 @default.
- W2039032840 hasRelatedWork W2071626605 @default.
- W2039032840 hasRelatedWork W2145759202 @default.
- W2039032840 hasRelatedWork W2375053148 @default.
- W2039032840 hasRelatedWork W2534878021 @default.
- W2039032840 hasRelatedWork W2787023326 @default.
- W2039032840 hasRelatedWork W3006757452 @default.
- W2039032840 hasRelatedWork W3078753841 @default.
- W2039032840 hasVolume "49" @default.
- W2039032840 isParatext "false" @default.
- W2039032840 isRetracted "false" @default.
- W2039032840 magId "2039032840" @default.
- W2039032840 workType "article" @default.