Matches in SemOpenAlex for { <https://semopenalex.org/work/W2039041360> ?p ?o ?g. }
- W2039041360 endingPage "4433" @default.
- W2039041360 startingPage "4422" @default.
- W2039041360 abstract "Joint moment is one of the most important factors in human gait analysis. It can be calculated using multi body dynamics but might not be straight forward. This study had two main purposes; firstly, to develop a generic multi-dimensional wavelet neural network (WNN) as a real-time surrogate model to calculate lower extremity joint moments and compare with those determined by multi body dynamics approach, secondly, to compare the calculation accuracy of WNN with feed forward artificial neural network (FFANN) as a traditional intelligent predictive structure in biomechanics. To aim these purposes, data of four patients walked with three different conditions were obtained from the literature. A total of 10 inputs including eight electromyography (EMG) signals and two ground reaction force (GRF) components were determined as the most informative inputs for the WNN based on the mutual information technique. Prediction ability of the network was tested at two different levels of inter-subject generalization. The WNN predictions were validated against outputs from multi body dynamics method in terms of normalized root mean square error (NRMSE (%)) and cross correlation coefficient (ρ). Results showed that WNN can predict joint moments to a high level of accuracy (NRMSE < 10%, ρ > 0.94) compared to FFANN (NRMSE < 16%, ρ > 0.89). A generic WNN could also calculate joint moments much faster and easier than multi body dynamics approach based on GRFs and EMG signals which released the necessity of motion capture. It is therefore indicated that the WNN can be a surrogate model for real-time gait biomechanics evaluation." @default.
- W2039041360 created "2016-06-24" @default.
- W2039041360 creator A5003887706 @default.
- W2039041360 creator A5016622484 @default.
- W2039041360 creator A5031332659 @default.
- W2039041360 creator A5050487837 @default.
- W2039041360 creator A5051869851 @default.
- W2039041360 creator A5055174519 @default.
- W2039041360 creator A5055879264 @default.
- W2039041360 creator A5059007121 @default.
- W2039041360 date "2014-07-01" @default.
- W2039041360 modified "2023-10-12" @default.
- W2039041360 title "Human lower extremity joint moment prediction: A wavelet neural network approach" @default.
- W2039041360 cites W1965300492 @default.
- W2039041360 cites W1970876195 @default.
- W2039041360 cites W1979892952 @default.
- W2039041360 cites W1980418485 @default.
- W2039041360 cites W1983639749 @default.
- W2039041360 cites W1990561395 @default.
- W2039041360 cites W1999084173 @default.
- W2039041360 cites W1999743657 @default.
- W2039041360 cites W2006447203 @default.
- W2039041360 cites W2008614670 @default.
- W2039041360 cites W2009195829 @default.
- W2039041360 cites W2028080922 @default.
- W2039041360 cites W2039846442 @default.
- W2039041360 cites W2046556840 @default.
- W2039041360 cites W2046798501 @default.
- W2039041360 cites W2048207309 @default.
- W2039041360 cites W2058947616 @default.
- W2039041360 cites W2067683752 @default.
- W2039041360 cites W2072588720 @default.
- W2039041360 cites W2082567977 @default.
- W2039041360 cites W2084465484 @default.
- W2039041360 cites W2085215933 @default.
- W2039041360 cites W2086103016 @default.
- W2039041360 cites W2090415544 @default.
- W2039041360 cites W2096718046 @default.
- W2039041360 cites W2097483652 @default.
- W2039041360 cites W2097998040 @default.
- W2039041360 cites W2098906490 @default.
- W2039041360 cites W2104641680 @default.
- W2039041360 cites W2110225269 @default.
- W2039041360 cites W2115790233 @default.
- W2039041360 cites W2116531629 @default.
- W2039041360 cites W2130281033 @default.
- W2039041360 cites W2133483534 @default.
- W2039041360 cites W2134288234 @default.
- W2039041360 cites W2139142308 @default.
- W2039041360 cites W2150573749 @default.
- W2039041360 cites W2155415405 @default.
- W2039041360 cites W2161843739 @default.
- W2039041360 cites W2162632010 @default.
- W2039041360 cites W2172103310 @default.
- W2039041360 cites W2293747114 @default.
- W2039041360 doi "https://doi.org/10.1016/j.eswa.2013.11.003" @default.
- W2039041360 hasPublicationYear "2014" @default.
- W2039041360 type Work @default.
- W2039041360 sameAs 2039041360 @default.
- W2039041360 citedByCount "98" @default.
- W2039041360 countsByYear W20390413602014 @default.
- W2039041360 countsByYear W20390413602015 @default.
- W2039041360 countsByYear W20390413602016 @default.
- W2039041360 countsByYear W20390413602017 @default.
- W2039041360 countsByYear W20390413602018 @default.
- W2039041360 countsByYear W20390413602019 @default.
- W2039041360 countsByYear W20390413602020 @default.
- W2039041360 countsByYear W20390413602021 @default.
- W2039041360 countsByYear W20390413602022 @default.
- W2039041360 countsByYear W20390413602023 @default.
- W2039041360 crossrefType "journal-article" @default.
- W2039041360 hasAuthorship W2039041360A5003887706 @default.
- W2039041360 hasAuthorship W2039041360A5016622484 @default.
- W2039041360 hasAuthorship W2039041360A5031332659 @default.
- W2039041360 hasAuthorship W2039041360A5050487837 @default.
- W2039041360 hasAuthorship W2039041360A5051869851 @default.
- W2039041360 hasAuthorship W2039041360A5055174519 @default.
- W2039041360 hasAuthorship W2039041360A5055879264 @default.
- W2039041360 hasAuthorship W2039041360A5059007121 @default.
- W2039041360 hasBestOaLocation W20390413602 @default.
- W2039041360 hasConcept C105795698 @default.
- W2039041360 hasConcept C119857082 @default.
- W2039041360 hasConcept C121332964 @default.
- W2039041360 hasConcept C127413603 @default.
- W2039041360 hasConcept C134306372 @default.
- W2039041360 hasConcept C139945424 @default.
- W2039041360 hasConcept C151800584 @default.
- W2039041360 hasConcept C153180895 @default.
- W2039041360 hasConcept C154945302 @default.
- W2039041360 hasConcept C170154142 @default.
- W2039041360 hasConcept C177148314 @default.
- W2039041360 hasConcept C179254644 @default.
- W2039041360 hasConcept C18555067 @default.
- W2039041360 hasConcept C2780092901 @default.
- W2039041360 hasConcept C33923547 @default.
- W2039041360 hasConcept C39920418 @default.
- W2039041360 hasConcept C41008148 @default.
- W2039041360 hasConcept C50644808 @default.