Matches in SemOpenAlex for { <https://semopenalex.org/work/W2039042371> ?p ?o ?g. }
- W2039042371 abstract "Consider a training set of multivariate input/output process data. Given a new observation, we ask the following questions: is the new observation normal or abnormal? Is one of the inputs or outputs abnormal (faulty) and which? For a linear Gaussian model of the process, the problem is solved by Bayesian hypothesis testing. The formulation differs from existing multivariate statistical monitoring methods by considering variance (uncertainty) of the linear regression model. In the limit case of zero model variance, the proposed method matches the established methods for anomaly detection and fault isolation. The proposed method might yield an order of magnitude reduction in fault isolation errors compared with the established approaches when regression models have large variance. This is the case for ill-conditioned multivariate regression models even with large training data sets. This paper also shows that isolating faults to a small ambiguity group works much better than trying to isolate a single fault. The proposed method is verified in a Monte Carlo study and in application to jet engine fault isolation." @default.
- W2039042371 created "2016-06-24" @default.
- W2039042371 creator A5043201307 @default.
- W2039042371 date "2015-09-01" @default.
- W2039042371 modified "2023-09-29" @default.
- W2039042371 title "Fault Isolation in Data-Driven Multivariate Process Monitoring" @default.
- W2039042371 cites W1488022545 @default.
- W2039042371 cites W1509561252 @default.
- W2039042371 cites W1510598017 @default.
- W2039042371 cites W1605916706 @default.
- W2039042371 cites W195815859 @default.
- W2039042371 cites W1973673888 @default.
- W2039042371 cites W1977107458 @default.
- W2039042371 cites W1986921156 @default.
- W2039042371 cites W1992947101 @default.
- W2039042371 cites W1993474918 @default.
- W2039042371 cites W1997713206 @default.
- W2039042371 cites W2002268936 @default.
- W2039042371 cites W2010481643 @default.
- W2039042371 cites W2013722564 @default.
- W2039042371 cites W2045656233 @default.
- W2039042371 cites W2055338449 @default.
- W2039042371 cites W2063033763 @default.
- W2039042371 cites W2064771454 @default.
- W2039042371 cites W2069546111 @default.
- W2039042371 cites W2079117807 @default.
- W2039042371 cites W2085466470 @default.
- W2039042371 cites W2094779818 @default.
- W2039042371 cites W2102832680 @default.
- W2039042371 cites W2103110513 @default.
- W2039042371 cites W2111856786 @default.
- W2039042371 cites W2114863795 @default.
- W2039042371 cites W2116492734 @default.
- W2039042371 cites W2119321688 @default.
- W2039042371 cites W2120670437 @default.
- W2039042371 cites W2130166249 @default.
- W2039042371 cites W2133902258 @default.
- W2039042371 cites W2137656905 @default.
- W2039042371 cites W2143707047 @default.
- W2039042371 cites W2144579212 @default.
- W2039042371 cites W2151442594 @default.
- W2039042371 cites W2152825153 @default.
- W2039042371 cites W2157202423 @default.
- W2039042371 cites W2158563242 @default.
- W2039042371 cites W2159520217 @default.
- W2039042371 cites W2161425050 @default.
- W2039042371 cites W2164629440 @default.
- W2039042371 cites W2168829660 @default.
- W2039042371 cites W2181420799 @default.
- W2039042371 cites W2317817947 @default.
- W2039042371 cites W2804779904 @default.
- W2039042371 cites W3148198191 @default.
- W2039042371 cites W53898306 @default.
- W2039042371 cites W654294952 @default.
- W2039042371 doi "https://doi.org/10.1109/tcst.2015.2389114" @default.
- W2039042371 hasPublicationYear "2015" @default.
- W2039042371 type Work @default.
- W2039042371 sameAs 2039042371 @default.
- W2039042371 citedByCount "14" @default.
- W2039042371 countsByYear W20390423712016 @default.
- W2039042371 countsByYear W20390423712017 @default.
- W2039042371 countsByYear W20390423712019 @default.
- W2039042371 countsByYear W20390423712020 @default.
- W2039042371 countsByYear W20390423712021 @default.
- W2039042371 countsByYear W20390423712022 @default.
- W2039042371 countsByYear W20390423712023 @default.
- W2039042371 crossrefType "journal-article" @default.
- W2039042371 hasAuthorship W2039042371A5043201307 @default.
- W2039042371 hasConcept C105795698 @default.
- W2039042371 hasConcept C121332964 @default.
- W2039042371 hasConcept C124101348 @default.
- W2039042371 hasConcept C152745839 @default.
- W2039042371 hasConcept C154945302 @default.
- W2039042371 hasConcept C161584116 @default.
- W2039042371 hasConcept C163716315 @default.
- W2039042371 hasConcept C172707124 @default.
- W2039042371 hasConcept C33923547 @default.
- W2039042371 hasConcept C41008148 @default.
- W2039042371 hasConcept C61326573 @default.
- W2039042371 hasConcept C62520636 @default.
- W2039042371 hasConceptScore W2039042371C105795698 @default.
- W2039042371 hasConceptScore W2039042371C121332964 @default.
- W2039042371 hasConceptScore W2039042371C124101348 @default.
- W2039042371 hasConceptScore W2039042371C152745839 @default.
- W2039042371 hasConceptScore W2039042371C154945302 @default.
- W2039042371 hasConceptScore W2039042371C161584116 @default.
- W2039042371 hasConceptScore W2039042371C163716315 @default.
- W2039042371 hasConceptScore W2039042371C172707124 @default.
- W2039042371 hasConceptScore W2039042371C33923547 @default.
- W2039042371 hasConceptScore W2039042371C41008148 @default.
- W2039042371 hasConceptScore W2039042371C61326573 @default.
- W2039042371 hasConceptScore W2039042371C62520636 @default.
- W2039042371 hasFunder F4320332374 @default.
- W2039042371 hasFunder F4320338294 @default.
- W2039042371 hasLocation W20390423711 @default.
- W2039042371 hasOpenAccess W2039042371 @default.
- W2039042371 hasPrimaryLocation W20390423711 @default.
- W2039042371 hasRelatedWork W1594541758 @default.
- W2039042371 hasRelatedWork W1977099304 @default.
- W2039042371 hasRelatedWork W1989264208 @default.